

TECHNICAL MEMORANDUM 2000 SITE INVESTIGATION

BASF RIVERVIEW SITE RIVERVIEW, MICHIGAN

Prepared for BASF Corporation Wyandotte, Michigan

January 2001

URS

800 West St. Clair Avenue Cleveland, Ohio 44113 216/ 622-2400 216/ 241-9083 - fax Project No. 38-08E06216.04

TABLE OF CONTENTS

Section 1	Introduction							
Section 2	Site S	urvey and Groundwater Elevations	2-1					
Section 3	Geoph	3-1						
	3.1	Field Program						
	3.2	Grid Layout	3-1					
	3.3	EM Survey						
	3.4	Magnetic Survey						
	3.5	Geophysical Investigation Results	3-2					
	3.6	Test Pits	3-2					
Section 4	Monitoring Well Installation and Development							
•	4.1	Monitoring Well Installation	4-2					
	4.2	Monitoring Well Development						
Section 5	Off-Sh	nore Soil Borings	5-1					
Section 6	Low-Flow Groundwater Sampling							
	6.1	Analytical Sample Collection	6-1					
Section 7	Field I	Hydraulic Conductivity Testing – Aquifer Properties	7-1					
Section 8	Ripra	p Sampling	8-1					
Section 9	Summ	nary of Analytical and Laboratory Data Review	9-1					
	9.1	Summary of Data Collected	9-1					
	9.2	Evaluation of Soil Data						
	9.3	Evaluation of Fill Data						
	9.4	Evaluation of Shallow Groundwater Data						
	9.5	Evaluation of Deep Groundwater Data						
	9.6	Evaluation of Concrete Data	9-3					
Section 10	Bench	h Scale Testing	10-1					

TABLE OF CONTENTS

LIST OF TABLES

Table 1	Test Pit Locations
Table 2	Changes to Monitoring Well Names
Table 3	Well Construction Information
Table 4	Groundwater Elevations - September 5, 2000
Table 5	Groundwater Elevations - October 3, 2000
Table 6	Groundwater Elevations - November 16, 2000
Table 7	Soil Samples - GSI Criteria Comparison
Table 8	Soil Samples - Detected PCBs
Table 9	Soil Samples - Detected Dioxins
Table 10	Fill Samples – GSI Criteria Comparison
Table 11	Groundwater Samples – GSI Criteria Comparison
Table 12	Groundwater Samples - Detected Dioxins
Table 13	Field Hydraulic Conductivity Estimates
Table 14	Field Hydraulic Conductivity Averages
Table 15	Concrete Samples - GSI Criteria Comparison

LIST OF FIGURES

Figure I	General Location Map
Figure 2	Site Features Map
Figure 3	Monitoring Well/Piezometer Location Map
Figure 4	Cross Section Location Map
Figure 5	Generalized Geologic Cross Section A-A' and B-B'
Figure 6	Generalized Geologic Cross Section C-C' and D-D'
Figure 7	Generalized Geologic Cross Section E-E' and F-F'

TABLE OF CONTENTS

Figure 8	Potentiometric Surface of Upper Saturated Zone - September 5, 2000
Figure 9	Potentiometric Surface of Upper Saturated Zone - October 3, 2000
Figure 10	Potentiometric Surface of Upper Saturated Zone - November 16, 2000
Figure 11	Potentiometric Surface of Lower Saturated Zone - September 5, 2000
Figure 12	Potentiometric Surface of Lower Saturated Zone - October 3, 2000
Figure 13	Potentiometric Surface of Lower Saturated Zone - November 16, 2000

LIST OF APPENDICES

Appendix A Geophysical Results

Appendix B Soil Boring Logs and Test Pit Logs

Appendix C Groundwater Sampling Logs

Appendix D Slug Test Results

Appendix E Comprehensive Data Tables

Appendix F Data Quality Assessment Report

This Technical Memorandum (Tech Memo) is in response to Michigan Department of Environmental Quality (MDEQ) request to evaluate the groundwater surface water interface (GSI) pathway at BASF Corporation's (BASF's) Riverview property (Site). MDEQ requested that the evaluation be completed in order to determine the interim response alternatives for eliminating the GSI pathway. Malcolm Pirnie (MP) reviewed the existing data from previous investigations and determined that the data were insufficient for eliminating the GSI pathway. As a result, MP prepared a Site Investigation Work Plan dated June 26, 2000 (Work Plan) to address data gaps for this pathway. Following its review, BASP chose to implement the Work Plan. URS was retained by BASF to implement this Work Plan. MDEQ utilized MP as an oversight contractor. The field investigation completed in July and August 2000 is referred to as the 2000 Site Investigation in this Tech Memo.

The contents of this Tech Memo are outlined the Technical Memorandum Guidance provided as Appendix A of the Work Plan. In general, this document provides a brief history of the site and a summary of the work performed during the investigation. As appropriate and applicable, this document describes deviations from the activities outlined in the Work Plan.

The Site is located north of the intersection of Riverside Drive and West Jefferson Avenue (18099 West Jefferson Avenue) in Riverview, Michigan, Wayne County. Figure 1 shows the general location of the Site. The Site is 30 acres, of which 27 acres are land and 3 acres are in the Trenton Channel of the Detroit River. Prominent site features are shown on Figure 2.

During the summer of 1998, BASF discovered an area of distressed vegetation on the eastern part of the property. The area was located east of the North Cap and west of a partially completed slurry wall. The area also displays an elevated water table. Soil samples from the area had elevated concentrations of salts and an elevated pH. These results were shared with the MDEQ and led to a 1999 field investigation and completion of an Engineering Evaluation / Cost Analysis (EE/CA) report dated December 1999.

The following section of this Tech Memo focus on deviations from the activities described in the Work Plan. Unless otherwise stated, the activities were completed as described in Section 4.0 of the Work Plan.

A site survey was completed in order to complete an accurate, up-to date base map showing the location of significant site features. Urban Engineering Inc. a licensed Michigan surveyor, completed the surveying tasks which included surface elevations, location of site features, top-of-casing elevation, and location of new and existing monitoring wells and piezometers. These data were used to prepare the site features for the various figures used in this memorandum, including Figure 3, which shows the monitoring well and piezometer locations. These data were also used in the preparation of Figure 4 which shows the location of the generalized geologic cross sections provided as Figures 5 through 7.

Groundwater elevations were collected on three separate events (September 5, October 3 and November 16, 2000.) Tables 4, 5 and 6 list the measurements and the elevations. Potentiometric surface maps were prepared for the upper and lower saturated zones for each one of these events. The maps are attached as Figures 8 through 13.

Surface geophysical surveys were conducted as part of the site investigation. As described in the Work Plan, the objective of the geophysical investigation was to delineate the extent of buried waste materials.

Electromagnetic (EM) and magnetic survey methods were utilized to accomplish the survey objective. Descriptions of the two geophysical methods are provided below. Descriptions of the survey instrumentation, field methods, and results are also provided.

3.1 FIELD PROGRAM

URS conducted the geophysical field investigation during the period of July 17 to 22, 2000. Technical staff from the MDEO's consultant, MP, were present during the field investigation to provide oversight on behalf of MDEO. Staff from the MDEQ also visited the site during the geophysical field investigation.

3.2 **GRID LAYOUT**

A site specific surveying coordinate system was established during previous phases of investigation. This coordinate system's origin (Northing = 0 feet, and Easting = 0 feet) is located at the northwest corner of the property. The coordinate system's Y-axis (Northing) runs parallel to the fence line that forms the northern boundary of the site. The X-axis (Easting) runs perpendicular to this fence line.

Prior to commencement of the geophysical investigation, a land surveyor established a base survey grid consisting of wooden lathe placed at 100-foot centers along grid lines Y = 0 feet and Y = -300 feet. The geophysical investigation team supplemented this base grid with PVC pin flags placed at 20-foot centers along lines spaced at 100 feet centers (Y = 0 feet, -100, -200 feet, -300 feet, etc... to -1,200 feet).

3.3 **EM SURVEY**

The EM data were collected using a Geonics EM-31 utilizing a data station spacing of 2.5 feet. Survey transects were oriented roughly north-south and spaced 20-feet apart. Quadrature and inphase measurements were collected at each station using the vertical dipole mode. The EM-31 readings were recorded using a data logger that allowed the operator to store and record station coordinate information and EM data, simultaneously.

Upon completion of the EM survey, the data were downloaded to a personal computer. The data were then formatted for input to a contouring program. Data plotting and contouring were accomplished using the computer software SURFER. Inputs to the contouring program included the station coordinates, EM readings, a selected spacing for gridding the raw data, and a contour interval. Color enhanced contour maps were generated for both the quadrature and inphase data. The contour maps are included as Appendix A.

3.4 MAGNETIC SURVEY

Magnetic total field and vertical gradient data were collected with a GeoMetrics G858G cesium vapor magnetic gradiometer. Data stations were on a spacing of 2.5 feet along roughly north-south oriented survey lines, 20-feet apart. Continuously recorded magnetic base station data were collected using a separate GeoMetrics G856 magnetometer, to make the diurnal corrections.

Upon completion of the magnetic survey, the data were downloaded to a personal computer. The data were then formatted for input to a contouring program. Data plotting and contouring was accomplished using the computer software SURFER. Inputs to the contouring program included the station coordinates, magnetic readings, a selected spacing for gridding the raw data, and a contour interval. Color enhanced contour maps were generated for both the magnetic total field and vertical gradient data. These maps are included in Appendix A.

3.5 GEOPHYSICAL INVESTIGATION RESULTS

The results of the geophysical investigation are depicted in the contour maps included in Appendix A. Figures A1 and A2 depict the EM quadrature and inphase response results, respectively. Figures A3 and A4 depict the magnetic vertical gradient and magnetic total field results, respectively. Appendix A includes a summary of the geophysical investigation.

3.6 TEST PITS

As shown on Figure 2, test pit excavations were completed at ten locations. Six of the locations (TP-1, 2, 3, 4, 5, and 6) were selected by MDEQ/MP based on their interpretation of geophysical surveys. The remaining four test pits revealed subsurface conditions for future geotechnical considerations. These four test pits were not associated with the above-described magnetic and electromagnetic anomalies. Three (TP-7, 8, 9) of the ten locations were between the eastern fence and the Trenton Channel shoreline. One test pit (TP-10) was completed at the location of monitoring well MW-M.

Table 1 lists the northing and easting coordinates and the rationale for the test pits. The test pits were excavated using a pneumatic tired "backhoe" operated by Vac All Services, Inc. Excavated soil was placed on high density polyethylene (HDPE) liner. Descriptive logs were prepared for each test pit by URS and are included in Appendix B. Both URS and MDEQ representatives collected composite samples of the excavated materials for laboratory analysis. MDEQ also collected 20 gallons of excavated material for a treatability study. Following completion, the test pits were backfilled to grade with excavated material and the HDPE liner material.

Descriptive logs of the test pits are attached in Appendix B. Photographs of the test pits were transmitted to MDEQ by BASF on December 18, 2000. The letter discusses the inherent difficulties of stabilizing the landfilled materials. As described in that letter, the material within the landfill is heterogeneous, and unfit for either insitu or exsitu stabilization. Materials unearthed include gravel, sand, metal bands, bricks, rubber hoses, steel pipes, boulders, metal building siding, chunks of concrete, reinforcing steel, and lumber.

Prior to this investigation, 37 monitoring wells and/or piezometers were present on the site. As part of this investigation, an additional 35 monitoring wells were installed. Table 2 lists the changes made to the well designations from the Work Plan. These changes were made with MDEQ's approval. Table 3 provides well construction details.

The objective of the groundwater investigation was to collect additional data to assess remedial technologies. The existing and new wells were used to monitor contaminant concentrations in each stratigraphic unit, evaluate aquifer properties, and measure groundwater flow in each stratigraphic unit. Nested wells were installed at several locations, which consisted of one shallow, and one or more deeper wells at a single location. Five deep, double cased wells were installed. These wells were double cased to prevent potential migration of shallow contamination migrating to the lower water bearing zone.

Drilling was completed by Stearns Drilling of Dutton, Michigan using a CME model 550 drilling rig. Drilling occurred between July 25 and August 15, 2000. The shallow borings were drilled using 4.25-inch inside diameter (ID) hollow stem augers (HAS). The deep borings were initially sampled by drilling a pilot hole with 4.25-inch ID HSA. After drilling to the top of the gray clay, 12.25-inch ID HSA were used enlarge the hole and install the 10-inch steel casing. The casing was installed through the fill material and into the native gray clay. Soil samples were collected continuously to the termination depth. Split-spoon samples were not collected during the drilling of the shallow nested wells since the soils were described in the adjacent deep well.

Soil samples were collected using a splitspoon sampler in general accordance with ASTM Method D1586. Upon collection, each split spoon was opened, logged, and field screened by the URS on-site representative. Samples selected for laboratory analysis were place in the appropriate laboratory containers and delivered to Shrader Laboratories, Inc. (Shrader) in Detroit, Michigan for analyses. In addition, five soil samples were also analyzed for dioxins as stipulated by MDEQ. Soil results exceeding the GSI are listed in Table 7. Tables 8 and 9 summarizes the PCB and dioxin compounds detected in soil samples.

Boring logs were prepared for each boring sampled. The boring logs are include in Appendix B. The boring logs generated from the new borings and the existing boring logs were used to prepare the generalized geologic cross sections. The cross section location are shown in Figure 4 and the cross sections follow on Figures 5, 6 and 7.

The termination depths for the deep wells do not comply with the Work Plan. Rather MDEQ and MP representatives insisted that the wells be advanced at the discretion of the on-site observers.

Prior to drilling each boring and collecting each sample, all reusable drilling and sampling equipment was cleaned using high-pressure hot water. Well screen and risers were also cleaned with high pressure hot water. Decontamination water generated during these activities was containerized in a 1,500-gallon tank and managed as investigation derived waste (IDW) by a BASF contractor. Soil generated during drilling operations was used to fill a low area of the site.

4.1 MONITORING WELL INSTALLATION

Soil borings were completed as monitoring wells. The wells were constructed of 2-inch diameter, flushthreaded, Schedule 40 PVC casing, terminating in a 2.5 to 5 feet long, wire-wound section of screen. A threaded bottom plug was also installed. A sand pack was placed in the annular space surrounding the screened section and extended 0.5 to 2 feet above the screened interval. All well materials were installed through the HSA. Generally, a minimum of 1 foot of coarse granular bentonite was placed above the sand pack and a bentonite cement slurry was placed in the remaining annular space above the seal. This protocol was modified when a well was too shallow to add the slurry. A watertight well cap was placed on all wells to inhibit tampering. A steel casing or flushmount protective cover was installed over each monitoring well. The steel casings or flushmount covers were set in concrete. Well completion diagrams are included on the boring logs located in Appendix B.

The horizontal and vertical locations of all the monitoring wells were surveyed by Urban Engineering, a local, Michigan licensed surveyor.

4.2 MONITORING WELL DEVELOPMENT

The new monitoring wells were developed after installation to remove silts or fine sands that may have accumulated in the well screen during drilling and installation procedures. The new shallow and intermediate wells were developed using a rotary screw pump on the drilling rig. A bladder pump and hand pump used to develop the deep wells and bedrock well, respectively.

All water and sediments removed during development were collected, containerized in a temporary holding tank, and managed as IDW as described above.

The Work Plan proposed that 16 offshore borings be advanced immediately east of the Site in the Trenton Channel. Thirteen borings were ultimately advanced. With the approval of the MDEQ, three borings were eliminated. Borings were eliminated when two adjacent borings in the same transect did not encounter fill material. The proposed boring number 3 was eliminated when boring numbers 2 and 4 did not encounter any fill.

As shown on Figures 2 and 4, the borings were located in four transects with between two and four borings in each transect. The borings were completed using a CME model 550 drilling rig mounted on a barge. The borings were advanced using 4.25 – inch HSA and splitspoon samplers. Boring logs for these borings are included in Appendix B.

Transect lines were marked by targets on one shore. Each boring location was recorded as a distance from the shore. Samples were collected using splitspoon samplers in general accordance with ASTM Method D1586. Upon collection, each split spoon was opened, logged, and field screened by the URS on-site representative. Samples selected for laboratory analysis were place in the appropriate laboratory containers and delivered to Shrader. Results exceeding the GSI are listed in Table 10.

Well purging was completed to remove the stagnant water from the well to obtain a representative water sample from the geologic formation. Purging was completed on all new and existing wells prior to sampling. The wells were purged and sampled using peristalic pumps or bladder pumps. A slow-flow peristaltic pump or bladder pump (used on the deeper wells) was used to minimize the disturbance to the samples while purging and sampling. When the peristalic pump was used, the Tygon sample tubing was changed prior to collection of each sample. When the bladder pump was used, the pump was cleaned prior to collection of each sample.

The following procedures were performed at each well:

- The condition of the outer well casing, concrete well pad, and any unusual conditions of the area around the well was noted in the field logbook;
- The well was opened and the air in the breathing zone around the well was monitored for VOCs with a PID:
- The condition of the inner well cap and casing was noted;
- The depth of static water level was measured (to nearest 0.01 foot) and recorded from the north rim of the casing:
- The time at which purging began was recorded; and
- The purge rate from the pump began at 0.5 L/min, but was adjusted to minimize the effects of drawdown on the well.

During purging, water was monitored for pH, conductivity, temperature, and turbidity. These parameters were monitored until they stabilized, or the well went dry. Copies of the low flow well sampling logs are attached in Appendix C. The monitoring meters were calibrated daily prior to use. Calibration times and readings were recorded in the field book.

It was not uncommon for the wells to go dry. Sampling rates were slow in many of the wells. Purging rates ranged between 0.013 and 0.5 liters per minutes.

6.1 ANALYTICAL SAMPLE COLLECTION

Samples for chemical analyses were collected immediately after the water chemistry stabilized. The pump rate for sample collection was 0.1 L/min.

Groundwater samples were analyzed for parameters included in a letter from BASF to MDEQ dated March 15, 2000. MDEQ approved the set of parameters in a letter to BASF dated May 25, 2000. The parameters are listed in Appendix F. In addition, five groundwater water samples were also analyzed for dioxins as stipulated by MDEQ.

Samples were collected from 35 new monitoring wells and 34 of the 37 existing monitoring wells. Samples were place in the appropriate laboratory containers and delivered to Shrader. Groundwater results exceeding the GSI are listed in Table 11. Dioxins detected in groundwater are included in Table 13.

Existing monitoring wells MW-M and MW-F were not sampled due to the presence of LNAPL. Monitoring well MW-M and temporary well SB-3 (from the 1999 investigation) were

subsequently removed during the test pit excavation. Existing monitoring well MW-L was not sampled due to lack of groundwater.

SECTIONSEVEN Field Hydraulic Conductivity Testing — Aquifer Properties

Rising and falling head "slug tests" were employed to estimate the hydraulic conductivities of the materials beneath the Site. Slug tests were completed in the field on the new and several existing wells. These tests were completed between August 21 and 31, 2000 and November 15 and 17, 2000. The Work Plan calls for three tests to be completed at each well. With MDEQ's consent, two tests (one rising and one falling) were completed at each well.

Rising head slug test data were used to estimate hydraulic conductivities using Bouwer and Rice method of analysis for unconfined aquifers (Bouwer & Rice, 1976; Bouwer, 1989). The results are summarized in Table 13. Table 14 provides mean hydraulic conductivities for shallow, intermediate and deep monitoring wells. These values are consistent with the values from previous hydraulic conductivity testing.

As shown on Figure 2, five samples were collected from the concrete riprap that lines the bank of the Trenton Channel on the Site. Sample locations were selected in an effort to distribute the samples across the Riprap Area; however, in some cases access was a limiting factor. The actual sample was selected from large pieces of concrete (crucibles) that were known to be used in previous manufacturing operations. These concrete pieces were moved from the water to the shore. A concrete saw was used to remove a section of concrete. These concrete samples were then split into a top 1/3, middle 1/3 and bottom 1/3 and placed into the appropriate containers and delivered to Shrader for PCB and mercury analysis. Results are listed in Table 15. The Riprap sampling locations and methodology were approved by MDEQ oversight personnel.

During the 1999 (EECA) and 2000 site investigations, groundwater samples were collected from on-site monitoring wells. During the 1999 investigation, three soil surface samples were collected. During the 2000 Site Investigation, additional on-site soil samples and river fill samples were collected. During both investigations, groundwater samples were collected from both new and existing monitoring wells and piezometers. Selected concrete Riprap samples were also collected and analyzed for particular chemical parameters during both investigations. The following sections briefly discuss the analytical results of the 2000 Site Investigation and how they compare to the 1999 analytical results.

URS completed a data quality review, which is summarized in the Data Quality Assessment Report included in Appendix F. Based on the review, the data are appropriate for their intended use of site characterization. URS also completed a cursory review of the MDEQ data deliverables for content and completeness. As a whole, the MDEQ data also appear to be suitable for their intended use of site characterization.

9.1 SUMMARY OF DATA COLLECTED

A total of 78 groundwater samples (including field blanks and duplicate samples), 51 soil samples, 4 fill samples, 15 concrete samples, and 10 aqueous trip blanks were submitted to Shrader for the analyses listed in Table F-1 of the Data Quality Assessment Report (Appendix F). Tables 4, 5 and 6 include a complete list of wells is included in the 2000 Site Investigation. Monitoring well MW-L was dry and could not be sampled. Monitoring well MW-M was decommissioned and was not sampled. Samples were collected between July 26 and August 31, 2000, and were received at the laboratory between July 27 and August 31, 2000.

The groundwater and soil samples were analyzed for volatile and semivolatile compounds, PCBs, metals and wet chemistry parameters using the USEPA SW-846 analytical methods specified in Appendix F. With the exception of volatile compounds, the fill samples were analyzed for the same set of analyses. Although not specified in the Work Plan, at MDEQ's request, five soil and five groundwater samples were also analyzed for dioxins.

Analysis for volatile compounds, semivolatile compounds, and PCBs were performed by Shrader. The metals and wet chemistry analyses were performed by Jones & Henry Laboratories of Northwood, Ohio. The dioxin analyses were performed by Pace Analytical Services, Inc., of Minneapolis, Minnesota. The Data Quality Assessment Report included in Appendix F evaluates the analyses resulting from the 2000 Site Investigation.

9.2 **EVALUATION OF SOIL DATA**

Soil analytical results from the 2000 Site Investigation are included as Table E-1 (Appendix E). Several volatile and semivolatile compounds, metals, cyanide and one PCB (Aroclor 1254) were detected.

Of the parameters detected, 13 volatile compounds, 10 semivolatile compounds, nine metals, chloride, total cyanide and nitrogen-ammonia exceed the GSI Criteria in at least one sample. The GSI exceedances are summarized in Table 7. PCB and dioxin compounds detected in soil samples are shown in Tables 8 and 9, respectively. Aroclor 1254 was detected in several of the soil samples. Aroclors 1248 and 1260 were detected in one soil sample.

The most significant soil GSI exceedances during the 1999 and 2000 investigations are mercury and cyanide.

9.3 **EVALUATION OF FILL DATA**

Fill analytical results from the 2000 Site Investigation are included as Table E-2 (Appendix E). Several semivolatile compounds, metals, cyanide and one PCB (Aroclor 1254) were detected. Of the parameters detected, two semivolatile compounds, eight metals, chloride, total cyanide and nitrogen-ammonia exceed the GSI Criteria in at least one sample. The GSI exceedances are summarized in Table 10.

For the analyses completed, the fill analytical results are similar to the soil results. The most significant GSI exceedances in the fill appear to be lead, mercury and cyanide. No fill samples were collected from the Trenton Channel during the 1999 investigation.

9.4 **EVALUATION OF SHALLOW GROUNDWATER DATA**

A total of 57 shallow monitoring wells (MWs and SMWs), intermediate monitoring wells (IMWs) and piezometers (PIEZs) were sampled during the 2000 Site Investigation. All of these wells are screened in either fill or the upper soil, above the clay. Shallow groundwater analytical results from the 2000 Site Investigation are included as Table E-4 (Appendix E).

Of the parameters detected, 14 volatile compounds, 19 semivolatile compounds, nine metals, chloride, total cyanide and nitrogen-ammonia exceed the GSI Criteria in at least one sample. The GSI exceedances are summarized in Table 11. Dioxin compounds detected in groundwater samples are shown in Table 12.

The shallow groundwater analytical results from the 2000 Site Investigation are similar to the results of the 1999 investigation.

9.5 **EVALUATION OF DEEP GROUNDWATER DATA**

During the 2000 Site Investigation, 11 deep monitoring wells (DMWs) screened in the clay, and one well screened in bedrock (BMW-1) were sampled. The analytical results from the deep monitoring wells sampled during the 2000 Site Investigation are included as Table E-4 (Appendix E).

Of the parameters detected, two volatile compounds and five semivolatile compounds exceed the GSI criteria in the groundwater sample collected from DMW-6. Bis(2-Ethylhexyl)phthalate exceeds the GSI criterion in the groundwater samples collected from DMW-3 and DMW-5. Selenium exceeds the GSI criterion in the sample collected from DMW-5. Chloride, total cyanide and nitrogen-ammonia exceed the GSI Criteria in at least one sample. No PCBs were detected in the deep wells. The GSI exceedances are summarized in Table 11. Dioxin compounds detected in groundwater samples are shown in Table 12.

The deep groundwater analytical results from the 2000 Site Investigation are similar to the results of the 1999 investigation. With the exception of nitrogen-ammonia and chlorides, no target parameters were reported in the bedrock monitoring well. MDEO is agreeable that this ammonia is naturally occurring and is not attributable to the Riverview Site (MDEQ Memorandum from Steve Hoin dated May 16, 2000). The chlorides are also naturally occurring.

9.6 **EVALUATION OF CONCRETE DATA**

Concrete analytical results from the 2000 Site Investigation are included as Table E-3 (Appendix E). Concrete samples were analyzed for PCBs and mercury. No PCBs were detected in the concrete samples. As shown on Table 15, four of the 15 samples collected contained mercury concentrations in excess of the GSI soil criterion. The mercury concentrations reported ranged between 0.20 mg/kg and 0.30 mg/kg.

The concrete analytical results from the 2000 Site Investigation are similar to the results of the 1999 investigation. During the 1999 investigation, two concrete samples containing the highest concentrations were also analyzed by the toxicity characteristics leaching procedure (TCLP). Mercury was not present in the TCLP leachate at concentrations above 0.002 mg/L. No TCLP analyses were completed during the 2000 Site Investigation.

The goal of the groundwater treatment is to reduce mercury concentrations to attain the GSI. Based on available technologies, the concentration of other chemicals found in groundwater are more easily reduced.

Pursuant to this goal, BASF contracted with Frontier Geosciences Inc. (Frontier) to perform bench scale testing to identify methods of reducing the mercury concentrations in the groundwater. The results of their study¹ are summarized below.

A series of experiments was undertaken to chemically characterize the groundwater, and to test the most promising approaches to the treatment of this water for mercury removal. The water was found to be high in mercury and arsenic, as well as sulfide, pH and dissolved organic carbon.

The raw water is not very amenable to any treatment option, but upon acidification, much of the dissolved organic matter precipitates, which co-precipitates much of the mercury as well. Typically about 90-99% of the total mercury present was removed by acidification alone, with up to another order of magnitude removed by secondary treatment options. Most of the mercury removal (99.3%) occurs as a result of acidification plus filtration. Additional removal (>99.9%) occurred when sulfhydryl resin, KeyleX-100, was used after acidifying the settled water. Frontier felt that with further optimization, this could be improved in a column-based (flow-through) extraction scheme.

Additional details concerning the bench scale testing and the application of the results to site remediation are included in the Feasibility Study.

URS Corporation

¹ Nicolas Bloom, "Influence of Speciation on the Efficiency and Reproducibility of Mercury Removal from Contaminated Wastewaters", Frontier Geosciences Inc., Jan 1, 2001.

Tables

Table 1
Test Pit Locations
August 200
BASF Property, Riverview Michigan

Test Pit ID	<u>Test Pit Lo</u>	<u>cation</u>	Anomaly / Rationale
	Northing	Easting	
TP-1	-0905 to -940	735	Unidentified relative high mag. area
TP-2	-1115 to -1140	635 to 660	Unidentified relative high EM area with no associated relative high mag. response. This test pit will be field located (i.e., adjusted) to minimize disturbance of poplar trees.
TP-3	-500 to -525	520 to 540	Unidentified relative high EM area with no associated relative high mag. response. Associated wth large EM anomaly:
TP-4	-180 to -200	500 to 520	Unidentified relative high EM area with no associated relative high mag. response. Associated wth large EM anomaly.
TP-5	-380 to -405	880	Unidentified relative high mag. And EM area.
TP-6	-360 to -385	625 to 645	Relative low EM area surround by high EM area. Look at contrasting response anomaly.
TP-7	-1098	885	Investigate material along shore in case of future excavation.
TP-8	-852	908	Investigate material along shore in case of future excavation.
TP-9	-606	927	Investigate material along shore in case of future excavation.
TP-10	-28	806	Investigate oily material in MW-M.

the term of term of term of the term of term o

Note:

Field readings and material descriptions are included in Test Pit Logs included in appendix.

TP-1 through TP-6 locations selected by Malcolm Pirnie.

Table 2
Changes to Monitoring Well Names
BASF Property, Riverview Michigan

Work Plan Designation	Final Designation	Work Plan Designation	Final Designation
MW-1s	SMW-4	MW-9s	SMW-13
MW-2s	SMW-9	MW-9i	IMW-13
MW-2i	IMW-9	MW-9d	DMW-13
MW-2d	DMW-9	MW-10s	SMW-23
MW-3s	SMW-5	MW-11s	SMW-22
MW-3i	IMW- 5	MW-12s	SMW-21
MW-4s	SMW-10	MW-13i	IMW-1
MW-4i	IMW-10	MW-14s	SMW-14
MW-4d	DMW-10	MW-15s	SMW-15
MW-5s	SMW-6	MW-16s	SMW-16
MW-5i	IMW-6	MW-17s	SMW-17
MW-6s	SMW-11	MW-18s	SMW-18
MW-6i	IMW-11	MW-19s	SMW-19
"MW-6d	DMW-11		
MW-7s	SMW-20	Existing Wells	
MW-8s	SMW-12	SMW-4	SMW-4-99
MW-8i	IMW-12	SMW-5	SMW-5-99
MW-8d	DMW-12	SMW-6	SMW-6-99

Notes:

Work Plan well designations were changed in the field at the request of BASF representative with the consent of DEQ representatives.

Table 3
Well Construction Information
BASF Property, Riverview Michigan

Well		Inside	Total	Notes	Well		Inside	Total	Notes
Number	Material_	Diam. (inches)	Depth (ft)		Number	Material	Diam. (inches)	Depth (ft)	·
Α	PVC	2	12.6		DMW-10	PVC	2	26	0-14' steel cased
В	PVC	2	10.1		IMW-10	PVC	2	13	•
C	PVC	2	8.5		SMW-10	PVC	2	8	<u>. </u>
D	PVC	2	8.6		DMW-11	PVC	2	26	0-12' steel cased
Е	PVC	2	9.6		IMW-11	PVC	2	11	
F	PVČ	2	Information	not available.	SMW-11	PVC	2	6	
G	PVC	2	11.0		DMW-12	PVC	2	30	1-22' steel cased
Н	PVC	2	17.9	`	IMW-12	PVC	2	17	
I	PVC	2	11.9		SMW-12	PVC	2	12	
J	PVC	2	15.5		DMW-13	PVC	2	28	0-18' steel cased
K	PVC	2	16.3		IMW-13	PVC	2	17	
L	PVC	2	6.2		SMW-13	PVC	2	12	
M	Decommissioned				SMW-14	PVC	2	8	drilled to 10'
	• .				SWM-15	PVC	2	. 8	
DMW-1	PVC	2	28	0-16' steel cased	SMW-16	PVC	2	8	drilled to 10'
IMW-1	PVC	2	14		SMW-17	PVC	2	8	drilled to 12'
SMW-I	PVC	2	10.5		SMW-18	PVC	2	8	
DMW-2	PVC	2	26	0-16' steel cased	SMW-19	PVC	2	8	
SMW-2	PVC	2	10.5		SMW-20	PVC	2	10	drilled to 12
DMW-3	PVC	2	24	0-9.4' steel cased	SMW-21	PVC	2.	8	
SMW-3	PVC	2	7.5	0-26' steel cased	SMW-22 SMW-23	PVC PVC	2	9	drilled to 10'
DMW-4	PVC	2	10	drilled to 14'	SMW-24	PVC	2	12	drilled to 16'
SMW-4 DMW-5	PVC PVC	2	24	0-14.3' steel cased	SMW-25	PVC	2	12	drilled to 14'
IMW-5	PVC	2	13	0-14.5 Steel Caseu	SMW-26	PVC	2	12	drilled to 18'
SMW-5	PVC	2	8		SMW-27	PVC	. 2	16	drilled to 24'
DMW-6	PVC	2	24	0-14' steel cased	BMW-1	PVC	2	65	0-30' steel cased
IMW-6	PVC	2	12	0-14 Sieer Cased	SB-I	PVC	4	11	drilled to 12'
SMW-6	PVC	2	7		SB-2	PVC	4	8.5	drilled to 10'
SMW-4-99	PVC	2	8		SB-3	PVC	4	8.5	drilled to 10'
SMW-5-99	PVC	. 2	8		PZ-1	PVC	$\frac{7}{2}$	10	difficulty 10
SMW-6-99	PVC	2	8		PZ-2	PVC	2	10	
SMW-7	PVC	2	. 8	Cracked conc. Pad	PZ-3	PVC	2	10	
SMW-8	PVC	2	6	C. author Golder & du	PZ-4	PVC	2	10	
DMW-9	PVC	2	28	0-14' steel cased	PZ-5	PVC	2	10	
IMW-9	PVC	2	13	o 14 steel edsed	PZ-6	PVC	2	10	
SMW-9	PVC	2	8	<u></u>	Stilling well	PVC	2	NA	

to be the test that the test to the test the test the

Notes:

Top of Casing information provided on groundwater elevations tables and boring logs.

Table 4 Groundwater Elevations - September 5, 2000 BASF Property, Riverview Michigan

Well	Elevation	Depth to	Groundwater	Notes	Well	Elevation	Depth to	Groundwater	Notes
Number	TOC	Water	Elevation	·	Number	TOC	Water	Elevation	
Α	581.00	8.26	572.74		DMW-10	577.66	24.50	553.16	
В	579.05	6.32	572.73		IMW-10	57.7.70	4.56	573.14	
Ċ	579.17	6.48	572.69	•	SMW-10	577.81	4.10	573.71	
D	579.07	5.16	573.91		DMW-11	577.62	25.04	552.58	
E	579.53	5.54	573.99		IMW-11	577.69	3.90	573.79	
F	582.01				SMW-11	577.70	3.91	573.79	
G	584.18	9.58	574.60		DMW-12	584.06	29.88	554.18	
Н	583.26	9.98	573.28		IMW-12	584.16	11.15	573.01	
I	583.30	9.42	573.88		SMW-12	584.19	11.08	573.11	
J	585.83	11.20	574.63		DMW-13	583.08	23.83	559.25	
K	585.73	12.29	573.44		IMW-13	583.09	8.94	574.15	
L	581.90	7.36	574.54		SMW-13	582.90	8,44	574.46	
M	Decommissioned				SMW-14	578.89	5.62	573.27	
					SWM-15	580.02	8.23	571.79	
DMW-1	579.16	10.80	568.36		SMW-16	577.45	4.94	572.51	
IMW-1	579.62	7.22	572.40		SMW-17	576.16	3.34	572.82	
SMW-1	579.55	7.14	572.41		SMW-18	575.74	3.26	572.48	
DMW-2	581.25	8.87	572.38		SMW-19	575.36	3.00	572.36	
SMW-2	580.75	6.86	573.89		SMW-20	582.98	9.00	573.98	
DMW-3	580.74	5.86	574.88		SMW-21	581.18	5.62	575.56	
SMW-3	580.33_	5.22	575.11	• 	SMW-22	581.94	7.98	573.96	
DMW-4	581.26	14.52	566.74		SMW-23	582.47	8.14	574.33	
SMW-4	581.41	8.77	572.64		SMW-24	579.45	6.77	572.68	
DMW-5	577.60	10.68	566.92		SMW-25	578.53	6.14	572.39	
IMW-5	577.79	5.28	572.51		SMW-26	577.28	5.01	572.27	
SMW-5	577.85	5.35	572.50		SMW-27	577.69	5.52	572.17	
DMW-6	578.01	5.73	572.28		BMW-1	577.78	23.01	554.77	
IMW-6	577.50	3.75	573.75		SB-1	580.42	5.62	574.80	
SMW-6	577.75	4.02	573.73		SB-2	581.67	8.16	573.51	
SMW-4-99	579.08	4.62	574.46		SB-3	579.63	5.69	573.94	
SMW-5-99	579.84	4.99	574.85		PZ-1	579.40	6.81	572.59	
SMW-6-99	579.65	5.58	574.07		PZ-2	579.25	6.43	572.82	
SMW-7	578.74	4.15	574.59	Cracked conc. Pad	PZ-3	578.97	6.44	572.53	•
SMW-8	578.22	3.91	574.31		PZ-4	578.90	5.24	573.66	
DMW-9	579.16	7.99	571.17		PZ-5	578.19	5.41	572.78	
IMW-9	579.12	6.56	572.56		PZ-6	578.87	6.28	572.59	
SMW-9	579.26	6.70	572.56		Stilling well	578.50	6.46	572.04	

The first of the first term that the first ter

Notes:

All measurements recorded in feet.

Elevations are in IGLD (International Great Lakes Datum).

Table 5
Groundwater Elevations - October 3, 2000
BASE Property, Riverview Michigan

Well	Elevation	Depth to	Groundwater	Notes	Well	Elevation	Depth to	Groundwater	Notes
Number	TOC	Water	Elevation		Number	TOC	Water	Elevation	
Λ	581.00	8.30	572.70		DMW-10	577.66	13.05	564.61	
В	579.05	6.54	572.51		IMW-10	577.70	4.58	573.12	
С	579.17	6.70	572.47	•	SMW-10	577.81	4.05	573.76	
D	579.07	5.05	574.02		DMW-11	577.62	11.98	565.64	
E	579.53	5.44	574.09		@ IMW-11	577.69	3.92	573.77	
F	582.01		·		SMW-11	577.70	3.90	573.80	
G	584.18	9.30	574.88		DMW-12	584.06	21.93	562.13	
11	583.26	9.39	573.87	.•	IMW-12	584.16	11.08	573.08	
Ī	583.30	9.00	574.30		SMW-12	584.19	10.98	573.21	
J	585.83	10.98	574.85		DMW-13	583.08	12.84	570.24	
K	585.73	12.27	573.46		IMW-13	583.09	8.51	574.58	
L	581.90	7.14	574.76		SMW-13	582.90	8.01	574.89	
M	Decommissioned				SMW-14	578.89	5.77	573.12	
					SWM-15	580.02	5.74	574.28	
DMW-1	579.16	10.88	568.28		SMW-16	577.45	4.81	572.64	
IMW-I	579.62	7.30	572.32		SMW-17	576.16	3.46	572.70	
SMW-1	579.55	7.45	572.10		SMW-18	575.74	3.29	572.45	
DMW-2	581.25	8.90	572.35		SMW-19	575.36	3.46	571.90	
SMW-2	580.75	6.83	573.92		SMW-20	582.98	8.95	574.03	
DMW-3	580.74	5.56	575.18		SMW-21	581.18	5.49	575.69	
SMW-3	580.33	5.18	575.15		SMW-22	581.94	8.07	573.87	
DMW-4	581.26	10.57	570.69		SMW-23	582.47	7.88	574.59	
SMW-4	581.41	8.82	572.59		SMW-24	579.45	6.78	572.67	
DMW-5	577.60	6.96	570.64		SMW-25	578.53	6.84	571.69	
IMW-5	577.79	5.60	572.19		SMW-26	577.28	5.76	571.52	
SMW-5	577.85	5.66	572.19		SMW-27	577.69	6.20	571.49	
DMW-6	578.01	5.82	572.19		BMW-1	577.78	22.84	554.94	
IMW-6	577.50	3.70	573.80		SB-1	580.42	5.05	575.37	
SMW-6	577.75	3.92	573.83		SB-2	581.67	7.51	574.16	
SMW-4-99	579.08	4.37	574.71		SB-3	579.63	5.45	574.18	
SMW-5-99	579.84	4.54	575.30		PZ-1	579.40	6.63	572.77	
SMW-6-99	579.65	4.54	575.11		PZ-2	579.25	6.53	572.72	
SMW-7	578.74	3.85	574.89	Cracked conc. Pad	PZ-3	578.97	6.61	572.36	
SMW-8	578.22	3.45	574.77		PZ-4	578.90	5.34	573.56	
DMW-9	579.16	7.35	571.81		PZ-5	578.19	5.35	572.84	
IMW-9	579.12	6.73	572.39		PZ-6	578.87	6.46	572.41	
SMW-9	579.26	6.88	572.38	Ì	Stilling well	578.50	6.94	571.56	

the first test that the first test that the

Notes:

All measurements recorded in feet.

Elevations are in IGLD (International Great Lakes Datum).

Elevations are based on Urban Engineering's August 29, 2000 letter.

Table 6 Groundwater Elevations - November 16, 2000 BASF Property, Riverview Michigan

Well	Elevation	Depth to	Groundwater	Notes	Well	Elevation	Depth to	Groundwater	Notes
Number	ŤOC	Water	Elevation	···	Number	TOC	Water	Elevation	
Λ	581.00	8.24	572.76		DMW-10	577.66	8.00	569.66	
. В	579.05	6.58	572.47		IMW-10	577.70	4.27	573.43	
C	579.17	6.73	572.44	•	SMW-10	577.81	3.40	574.41	
D	579.07	3.86	575.21		DMW-11	577.62	8.73	568.89	
E	579.53	4.19	575.34		IMW-11	577.69	3.07	574.62	
17	582.01			Oil in well	SMW-11	577.70	3.12	574.58	
G	584.18	8.69	575.49		DMW-12	584.06	14.96	569.10	
11	583.26	8.62	574.64		IMW-12	584.16	11.11	573.05	
1	583.30	8.09	575.21		SMW-12	584.19	11.00	573.19	
J	585.83	10.01	575.82		DMW-13	583.08	12.36	570.72	
K	585.73	11.95	573.78		1MW-13	583.09	8.20	574.89	
L	581.90	6.62	575.28	•	SMW-13	582.90	8.67	574.23	
M	Decommissioned				SMW-14	578.89	3.61	575.28	•
					SWM-15	580.02	3.48	576.54	
DMW-1	579.16	11.39	567.77		SMW-16	577.45	3.80	573.65	
IMW-I	579.62	7.39	572.23		SMW-17	576.16	5.92	570.24	11/17/00
SMW-I	579.55	7.48	572.07		SMW-18	575.74	5.66	570.08	11/17/00
DMW-2	581.25	9,35	571.90		SMW-19	575.36	4.67	570.69	11/17/00
SMW-2	580.75	6.12	574.63		SMW-20	582.98	8.86	574.12	
DMW-3	580.74	6.09	574.65		SMW-21	581.18	5.35	575.83	
SMW-3	580.33	5.05	575.28	<u> </u>	SMW-22	581.94	8.18	573.76	
DMW-4	581.26	10.33	570.93		SMW-23	582.47	7.83	574.64	
SMW-4	. 581.41	8.99	572.42		SMW-24	579.45	6.89	572.56	
DMW-5	577.60	6.33	571.27	•	SMW-25	578.53	7.47	571.06	
IMW-5	577.79	5.99	571.80	e.	SMW-26	577.28	6.45	570.83	
SMW-5	577.85	6.08	571.77		SMW-27	577.69	6.85	570.84	
DMW-6	578.01	6.13	571.88		BMW-1	577.78	23.29	554.49	<u></u>
IMW-6	577.50	3.02	574.48	,	SB-1	580.42	4.15	576.27	
SMW-6	577,75	3.29	574.46		SB-2	581.67	7.16	574.51	
SMW-4-99	•	3.81	575.27		SB-3	579.63	5.17	574.46	
SMW-5-99	579.84	3.41	576.43		PZ-1	579.40	7.14	572.26	
SMW-6-99		4.38	575.27		PZ-2	579.25	6.80	572.45	
SMW-7	578.74	3.45	575.29	Cracked conc. Pad	PZ-3	578.97	6.99	571.98	
SMW-8	578.22	2.99	575.23		PZ-4	578.90	5.51	573.39	
DMW-9	579.16	8.31	570.85	**	PZ-5	578.19	6.79	571.40	
IMW-9	579.12	7.10	572.02		PZ-6	578.87	6.78	572.09	
SMW-9	579.26	7.26	572.00		Stilling well	578.50	7.85	570.65	

Notes:

All measurements recorded in feet.

Elevations are in IGLD (International Great Lakes Datum).

Table 7
BASF Riverview, Michigan
Soil Samples
GSI Criteria Comparison
Printed: 1/31/0

SA	MPLE #	GSI	DMW-09 (02'-04')	DMW-09 (06'-08')	DMW-09 (10'-12')	DMW-09 (26'-28')	DMW-10 (02'-04')	DMW-10 (08'-10')	DMW-10 (10'-12')	DMW-10 (24'-26')	DMW-11 (04'-06')	DMW-11 (06'-08')	DMW-11 (24'-26')
VOLATILE ORGA	NICS	Criteria ⁺	1997001 7/27/00	1997002 7/27/00	1997003 7/27/00	J007001 8/2/00	J001001 7/31/00	J001002 7/31/00	J001003 7/31/00	J007002 8/2/00	J001006 7/31/00	J001008 7/31/00	J008001 8/3/00
1,2-Dichlorobenzene	mg/kg	0.36	0,3 ND	0.3 ND	0.3 ND	0.1 ND	0.3 ND	0.2 ND	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.1 ND
1,2-Dichloroethane	mg/kg	0.12	0.4 ND*	0.4 ND*	. 0.4 ND*	0.3 ND*	0,4 ND*	0.2 ND*	0.2 ND*	0.2 ND*	0.2 ND*	0.3 ND*	0.2 ND*
1,2-Dichloropropane	mg/kg	0.18	0.2 ND*	0.2 ND*	0.3 ND*	0.2 ND*	0.2 ND*	0.1 ND	0.09 ND	0.1 ND	0.1 ND	0.2 ND*	0.1 ND
1,4-Dichlorobenzene	mg/kg	0.29	0.2 ND	0.2 ND	0.2 ND	0.08 ND	0.2 ND	0.33	0.08 ND	0.1 ND	0.1 ND	0.1 ND	0.07 ND
Acetone	mg/kg	34	8 ND	3 ND	3 ND	2. ND	3 ND	2 ND	I ND	2 ND	. 2 ND	2 ND	4 ND
Benzene	mg/kg	0.24	0.07 ND	0.23	0.08 ND	0.05 ND	0.06 ND	0.19	0.03 ND	0.04 ND	0.16	0.05 ND	0.03 ND
Ethylbenzene	mg/kg	0.36	0.2 ND	0.2 ND	0.2 ND	0.09 ND	0.2 ND	0.1 ND	0.07 ND	0.1 ND	0.33	0.1 ND	0.08 ND
m,p-Xylene	mg/kg	0.7	0.09 ND	0.09 ND	0.1 ND	0,05 ND	0.19	0.23	0,04 ND	0.05 ND	1.6	0.37	0.04 ND
Methylene chloride	mg/kg	0.94	0.2 ND	0.2 ND	0.2 ND	0.1 ND	0.2 ND	0.1 ND	0.09 ND	0.1 ND	4.5	0.2 ND	0.09 ND
o-Xylene	mg/kg	0.7	0.09 ND	0.1 ND	().1 ND	0.06 ND	0.13	0.43	0.04 ND	0.06 ND	0.47	0.2	0.05 ND
Toluene	mg/kg	2.8	0.09 NID	0.2	0.1 ND	0.4	1.2	1.3	0.04 ND	0.23	7.4	1.6	0.04 ND
Trichloroethene	mg/kg	0.58	0.2 ND	0.2 ND	0.3 ND	0.2 ND	0.2 ND	0.1 ND	0.09 ND	0.1 ND	0.1 ND	4.3	0.1 ND
Vinyl chloride	mg/kg	0.3	0.1 ND	0.1 ND	0.1 ND	0.09 ND	0.1 ND	0.07 ND	0.05 ND	0.07 ND	0.08 ND	0.72	0.06 ND
Xylenes, total	mg/kg	0.7	0.09 ND	0:09 ND.	0,1 ND	0.05 ND	0.32	0.36	0,04 ND	0.06 ND	2.07	0.57	0.04 ND

[5	SAMPLE	# GSI	DMW-09 (02'-04')	DMW-09 (06'-08')	DMW-09 (10'-12')	DMW-09 (26'-28')	DMW-10 (02'-04')	DMW-10 (08'-10')	DMW-10 (10'-12')	DMW-10 (24'-26')	DMW-11 (04'-06')	DMW-11 (06'-08')	DMW-11 (24'-26')
SEMIVOLATI	LE	Criteria+	1997001 7/27/00	1997002 7/27/00	1997003 7/27/00	J007001 8/2/00	J001001 7/31/00	J001002 7/31/00	J001003 7/31/00	J007002 8/2/00	J001006 7/31/00	J001008 7/31/00	J008001 8/3/00
2,4,6-Trichlorophenol	mg/kg	0.33	0.1 ND	0.1 ND .	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND
Acenaphthene	mg/kg	4.4	0.1 ND	0.247	0.1 ND	0.1 ND	0.464	6.59	0.1 ND				
Carbazole	mg/kg	1.1	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.29	0.915	0.1 ND	0.1 ND	0.456	6.32	0.1 ND
Dibenzofuran	mg/kg	1.7	.0.1 ND	0.12	0.1 ND	0.1 ND	0.546	1.19	- 0.1 ND	0.1 ND	0.71	4.56	0.1 ND
Fluoranthene	mg/kg	5.5	0.102	0.564	0.1 ND	0.1 ND	2.4	3.17	0.1 ND	0.1 ND	5,48	49.7	0.1 ND
Fluorene	mg/kg	5.3	0.1 ND	0.185	0.1 ND	0.1 ND	0.214	1.08	0.1 ND	0.1 ND	0.982	6.1	0.1 ND
Hexachlorobutadiene	mg/kg	0.33	0.1 ND	0.3 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND				
Isophorone	mg/kg	6.2	0.1 ND	0.1 ND	0.1 ND	0.1 ND	. 0.1 ND	.0.2 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND
Naphthalene	mg/kg	0.87	0.1 ND	0.547	0.1 ND	0.1 ND	0.797	7.88	0.102	0.1 ND	1.52	7.57	0.1 ND
Pentachlorophenol	mg/kg	0.036	0.3 ND*	0.2 ND*	0.3 ND*	0.3 ND*	0.3: ND*	0.3 ND*	0.3 ND*	0.2 ND*	0.3 ND	0.3 ND*	0.2 ND*
Phenanthrene	mg/kg	2.3	0.1 ND	0.704	0.1 ND	0.1 ND	2.65	4.58	0.1 ND	0.1 ND	5.11	44.7	0.1 ND

		GSI	DMW-09 (02'-04')	DMW-09 (06'-08')	DMW-09 (10'-12')	DMW-09 (26'-28')	DMW-10 (02'-04')	DMW-10 (08'-10')	DMW-10 (10'-12')	DMW-10 (24'-26')		·	DMW-11 (24'-26')
		Criteria+	1997001 7/27/00	1997002 7/27/00	1997003 7/27/00	J007001 8/2/00	J001001 7/31/00	J001002 7/31/00	J001003 7/31/00	J007002 8/2/00	J001006 7/31/00	J001008 7/31/00	J008001 8/3/00
Arsenic	mg/kg	16	11.3	3.6	7.9	9.3.	43.3	17.2	10.3	7.5	6.6	6.2	6.9
Barium	mg/kg	75	61.3	108	116	65.6	142	262	110	64.6	136	171	65.6
Cadmium	mg/kg	1.2	0.2	0.5	0.13	0.2	1.5	1.5	0.29	0.2	0.8	3	0.2
Chromium	mg/kg	18	18.4	16.2	30.4	15.6	23.9	35.4	30.2	15.4	31.4	89.2	15.4
Copper	mg/kg	32	36.4	19.3	26.8	21.4	129	54	19.6	21.2	38.2	116	21.4
Lead	mg/kg	21	35.1	38	13.6	9.6	210	220	16.2	9	158	111	8.2
Mercury	mg/kg	0.13	0.79	0.62	0.05 ND	0:05 ND	3.61	9.74	0.21	0.05 ND	5.25	5.77	0.05 ND
Selenium	mg/kg	0.41	1.2	0.3 ND	0.3 ND	I ND	0.8	0.8	0.3 ND	I ND	0.8	1.3	0.2 ND
Zinc	mg/kg	47	41.6	70.9	93.5	57.5	212	275	76	46.6	238	783	46

INORGANICS	SAMPLE#	GSI Criteria+	DMW-09 (02'-04') 1997001 7/27/00	DMW-09 (06'-08') 1997002 7/27/00	DMW-09 (10'-12') 1997003 7/27/00	DMW-09 (26'-28') J007001 8/2/00	DMW-10 (02'-04') J001001 7/31/00	DMW-10 (08'-10') J001002 7/31/00	DMW-10 (10'-12') J001003 7/31/00	DMW-10 (24'-26') J007002 8/2/00	DMW-11 (04'-06') J001006 7/31/00	DMW-11 (06'-08') J001008 7/31/00	DMW-11 (24'-26') J008001 8/3/00
Chloride	mg/kg	1000	1110	1530	3160	650	3020	1630	2550	888 ,	1810	2870	1630
Cyanide, Total	mg/kg	0.4	2.76	0.89	0.1 ND	10 ND	2.91	1.04	0.206	0.1 ND :	1.61	3,16	0.2 ND
Nitrogen, Ammonia	a mg/kg	0.58	17 ND*	50	17 ND*	60	17	60	30	17	17 ND*	23	16. ND*

⁺ Source - Operational Memorandum No. 18 or:MDEQ-Background Value.

Bold results indicate GSI Criterion exceedance.

Indicates laboratory non-detect with MDL greater than GSI criterion.

ND - Non-Detect (Not reported above laoratory detection limits).

N/A - Not analyzed

Table 7
BASF Riverview, Michigan
Soil Samples
GSI Criteria Comparison
Printed: 1/31/0

SA	MPLE#	GSI	DMW-110 (04'-06')	DMW-12 (04'-06')	DMW-12 (06'-08')	DMW-12 (10'-12')	DMW-12 (18'-20')	DMW-12 (28'-30')	DMW-120 (28'-30')	DMW-13 (04'-06')	DMW-13 (06'-08')	DMW-13 (10'-12')	DMW-13 (26'-28')
VOLATILE ORGA	NICS	Criteria ⁺	J001007 7/31/00	J002007 8/1/00	J002004 8/1/00	J002005 8/1/00	J002006 8/1/00	J008004 8/3/00	J008003 8/3/00	J002001 7/31/00	J002002 7/31/00	J002003 7/31/00	J008002 8/3/00
1,2-Dichlorobenzene	mg/kg	0.36	0.2 ND	0.1 ND	1.2	0.3 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.1 ND
1,2-Dichloroethane	mg/kg	0.12	0.2 ND*	0.2 ND*	0.3 ND*	0.4 ND*	0.3 ND*	0.2 ND*	0.2 ND*	0.2 ND*	0.3 ND*	0.2 ND*	0.2 ND*
1,2-Dichloropropane	mg/kg	0.18	0.1 ND	0.1 ND	0.2 ND*	0.2 ND*	0.2 ND*	0.1 ND	0.1 ND	. 0.1 ND	0.71	0.1 ND	0.1 ND
1,4-Dichlorobenzene	mg/kg	0.29	0.1 ND	0.08 ND	6.8	0.2 ND	0.1 ND	0.08 ND	0.09 ND	0.09 ND	0.1 ND	0.1 ND	0.07 ND
Acetone	mg/kg	34	440	I ND	2 ND	3 ND	2 ND	3. ND	2 ND	2 ND	2 ND	2 ND	I ND
Benzene	mg/kg	0.24	0.21	0.03 'ND	0.05 ND	0.07 ND	0.05 ND	0.03 ND	0.03 ND	0.04 ND	0.24	0.04 ND	0.5
Ethylbenzene	mg/kg	0.36	0.2	0.09- ND	0.1 ND	0.2 ND	0.1 ND	0.09 ND	0.1 ND	0.1 ND	0.2	0.1 ND	0.66
m,p-Xylene	mg/kg	0.7	0.9	0.04 ND	0.07 ND	0.51	0.06 ND	0.04 ND	0.21	0.05 ND	0.61	0.06 ND	1.8
Methylene chloride	mg/kg	0:94	27	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ·ND	0.1 ND	0.I ND
o-Xylene	mg/kg	0.7	0.25	0.05 ND	0.08 ND	0.1 ND	0.07 ND	0.05 ND	0.06 ND	0.06 ND	0.38	0.07 ND	0.63
Toluene	mg/kg	2.8	2.7	0.04 ND	0.07 ND	0.09 ND	0:06 ND	0.04 ND	0.05 ND	0.05 ND	0.66	0.06 ND	0.22
Trichloroethene	mg/kg	0.58	0.1 ND	0,1 ND	0.2 ND	0.2 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.89	0.1 ND	0.1 ND
Vinyl chloride	mg/kg	0.3	0,08 ND	0.06 ND	0.09 ND	0.1 ND	0.09 ND	0.06 ND	0.06 ND	0.08 ND	0.1 ND	0.08 ND	0.06 ND
Xylenes, total	mg/kg	0.7	1.15	0.04 ND	0.07 ND	0.51	0.06. ND	0.05 ND	0.21	0.06 ND	0.99	0.06 ND	2.43

	SAMPLE	# GSI	DMW-110 (04'-06')	DMW-12 (04'-06')	DMW-12 (06'-08')	DMW-12 (10'-12')	DMW-12 (18'-20')	DMW-12 (28'-30')	DMW-120 (28'-30')	DMW-13 (04'-06')	DMW-13 (06'-08')	DMW-13 (10'-12')	DMW-13 (26'-28')
SEMIVOLAT	LE	Criteria+	J001007 7/31/00	J002007 8/1/00	J002004 8/1/00	J002005 8/1/00	J002006 8/1/00	J008004 8/3/00	J008003 8/3/00	J002001 7/31/00	J002002 7/31/00	J002003 7/31/00	J008002 8/3/00
2,4,6-Trichlorophenol	mg/kg	0.33	0.1 ND .	0.1 ND	. 0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND
Acenaphthene	mg/kg	4.4	0.109	0.1 ND	0.1 ND	1.11	0.1 ND	0.1 ND	0.1 ND	0.1 ND	5.74	0.185	0.1 ND
Carbazole	mg/kg	1.1	0.169	0.1 ND	0.1 ND	1.21	0.1 ND	0.1 ND	0.1 ND	0.1 ND	4.27	0.28	0.1 ND
Dibenzofuran	mg/kg	1.7	0.229	0.1 ND	0.256	3.65	0.1 ND	0.1 ND	0.1 ND	0.1 ND	35.8	0.968	0.1 ND
Fluoranthene	mg/kg	5.5	1.21	0.1 ND	0.81	14.3	0.1 ND	0.1 ND	0.1 ND	0.151	67	2.31	0.1 ND
Fluorene	mg/kg	5.3	0.328	. 0.1 ND	0.191	3.21	0.1 ND	0.1 NĐ	0,1 ND	0.1 ND	35.2	1.05	0.1 ND
Hexachlorobutadiene	mg/kg	0.33	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	38.2	0.1 ND	0.1 ND
Isophorone	mg/kg	6.2	0.1 ND	0.1 ND	0.1 ND	8.6	0.1 ND	0.1 ND	2.94	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Naphthalene	mg/kg	0.87	0.906	0.1 ND	0.192	2.29	0,1 ND	0.1 ND	0.1 ND	0.1 ND	176	3.14	0.1 ND
Pentachlorophenol	mg/kg	0.036	0.3 ND*	0.2 ND*	0.3 ND*	0.3 ND	0.3 ND*	0.2 ND*	0.2 ND*	0.2 ND*	0.3 ND*	0.3 ND*	0.2 ND*
Phenanthrene	mg/kg	2.3	1.53 .	0.1 ND	1.28	20.3	0.1 ND	0.1 ND	0.1 ND	0.114	100	3.11	0.1 ND

	-	GSI	DMW-110 (04'-06')	DMW-12 (04'-06')	DMW-12 (06'-08')	DMW-12 (10'-12')	DMW-12 (18'-20')	DMW-12 (28'-30')	DMW-120 (28'-30')	DMW-13 (04'-06')	DMW-13 (06'-08')	DMW-13 (10'-12')	DMW-13 (26'-28')
	•	Criteria+	J001007 7/31/00	J002007 8/1/00	J002004 8/1/00	J002005 8/1/00	J002006 8/1/00	J008004 8/3/00	J008003 8/3/00	J002001 7/31/00	J002002 7/31/00	J002003 7/31/00	J008002 8/3/00
Arsenic	mg/kg	16	7.9	1.3	17.3	20	8.9	7.6	6.8	11	12.1	2.3	6.7
Barium	mg/kg	75	122	. 3.5	138	118	50	69.4	64	124	180	17.1	67.3
Cadmium	mg/kg	1.2	0.6	0:08	2.6	1.4	0.4	0.2	0.2	0.6	0.6	0.07	0.1
Chromium	mg/kg	18	19	1.5	31.3	40.4	17.8.	46.9	18.1	34.9	24.1	8	15.7
Copper	mg/kg	32	32	3.8	288	151	23.9	22.3	23.8	113	70.2	8.1	. 20.1
Lead	mg/kg	2:1	62.8	3.9	387	805	14.9	10.3	8.1	161	190	9.8	9.9
Mercury	mg/kg	0.13	2.52	0.15	2.19	0.25	0.1	0:05 ND	0.05 Ni)	33.7	11.1	0.23	0.06
Selenium	mg/kg	0.41	0.3 ND	0.5 ND	0.7	1.2	l ND	0.2 ND	0.2 ND	0.3 ND	2 ND	0.3 ND	0.2 ND
Zinc	mg/kg	47	120	5.8	298	230	62.7	47.9	52.6	114	192	22.9	44.5

INORGANICS	SAMPLE #	GSI Criteria+	DMW-110 (04'-06') J001007 7/31/00	DMW-12 (04'-06') J002007 8/1/00	DMW-12 (06'-08') J002004 8/1/00	DMW-12 (10'-12') J002005 8/1/00	DMW-12 (18'-20') J002006 8/1/00	DMW-12 (28'-30') J008004 8/3/00	DMW-120 (28'-30') J008003 8/3/00	DMW-13 (04'-06') J002001 7/31/00	DMW-13 (06'-08') J002002 7/31/00	,	DMW-13 (26'-28') J008002 8/3/00
Chloride	mg/kg	1000	1590	1590	2620	1440	2450	1400	1580	1980	1450	1120	1620
Cyanide, Total	mg/kg	0.4	0.506	0.1 ND	2.82	1.72	0.446	0.2 ND	6.1	0,124	0.361	0.899	0.2 ND
Nitrogen, Ammoni	ia mg/kg	0.58	17 ND*	17 ND*	27	30	50	16 ND*	16	37	17 ND*	87	16 ND*

⁺ Source - Operational Memorandum No. 18 or MDEQ Background Value.

W:\BASF\Riverview\PhaseII\Report\GSI-2.xls, Soils

Bold results indicate GSI Criterion exceedance.

^{*} Indicates laboratory non-detect with MDL greater than GSI criterion.

ND - Non-Detect (Not reported above laoratory detection limits).

N/A - Not analyzed

Table 7
BASF Riverview, Michigan
Soil Samples
GSI Criteria Comparison
Printed: 1/31/0

SA	MPLE #	GSI	IMW-01 (02'-04')	IMW-01 (06'-08')	IMW-05 (02'-04')	IMW-05 (04'-06')	IMW-06 (02'-04')	IMW-06 (06'-08')	IMW-060 (06'-08')	SMW-04 (10'-12')	SMW-14 (06'-08')	SMW-15 (04'-06')	SMW-16 (0'-02')
VOLATILE ORGA	NICS	Criteria +	J008010 8/7/00	J008011 8/7/00	J008022 8/8/00	J008021 8/8/00	J008017 8/8/00	J008018 8/8/00	J008019 8/8/00	J008006 8/4/00	J008009 8/7/00	J008008 8/7/00	J021001 8/9/00
1,2-Dichlorobenzene	mg/kg	0.36	: 0.1 ND	0.2 ND	0.3 ND	0.2 ND	0.2 ND	0.2 ND	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
1,2-Dichloroethane	mg/kg	0.12	0.2 ND*	0.2 ND*	0.3 ND*	: 0.3 ND	0.4 ND	2.5	4	0.2 ND*	0.2 ND*	0.2 ND*	0.3 ND*
1,2-Dichloropropane	mg/kg	0.18	0.1 ND	0.1 ND	0.2 ND*	0.2 ND*	0.2 ND*	0.69	0.92	0.1 ND	0.1 ND	0.1 ND	0.2 ND
1,4-Dichlorobenzene	mg/kg	0.29	0.08 ND	0.4 ND	0.2 ND	0.2 ND*	0.2 ND*	0.1 ND	0.2 ND	0.08 ND	0.07 ND	0.08 ND	0.08 NĐ
Acetone	mg/kg	34	20	3 ND	4 ND	4 ND	4 ND	5 ND	35	2 ⁻ ND	2 ND	2 ND	2 ND
Benzene	mg/kg	0.24	0.03 ND	0:04 ND	0.21	0.06 ND	0.07 ND	0.06 ND	0.07 ND	0.04 ND	0.04 ND	0.04 ND	0.06 ND
Ethylbenzene	mg/kg	0.36	0.09 ND	0.1 ND	0.2 ND	0,09 ND	0.09 ND	0.1 ND	0.1 ND				
m,p-Xylene	mg/kg	0.7	0.05 ND	• 0.05 - ND	0.19	0.2	0:09 ND	0.08 ND	0.19	0.05 ND	0.04 ND	0.05 ND	0.05 ND
Methylene chloride	mg/kg	0.94	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	5.7	30	0.1 ND	0.1 ND	0.2 ND
o-Xylene	mg/kg	0.7	0.05 ND	0.07 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.06 ND	0.05 ND	0.06 ND	0.06 ND
Toluene	mg/kg	2.8	. 0.05 ND	0.05 ND	0.12	0.22	0.09 ND	0.34	0.55	0.05 ND	0.04 ND	0.05 ND	0,05 ND
Trichloroethene	mg/kg	0.58	0.1 ND	0:1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND				
Vinyl chloride	mg/kg	0.3	0.07 ND	0.08 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	1.2	0.07 ND	0.06 ND	0.08 ND	0.1 ND
Xylenes, total	mg/kg	0.7	: 0.05 ND	0.07 ND	0.19	0.2	0,09 ND	0.08 ND	0.19	0.05 ND	0.05 ND	0.06 ND	0.05 ND

	SAMPLE	# GSI	IMW-01 (02'-04')	IMW-01 (06'-08')	IMW-05 (02'-04')	IMW-05 (04'-06')	IMW-06 (02'-04')	IMW-06 (06'-08')	IMW-060 (06'-08')	SMW-04 (10'-12')	SMW-14 (06'-08')	SMW-15 (04'-06')	SMW-16 (0'-02')
SEMIVOLATI	LE	Criteria+	J008010 8/7/00	J008011 8/7/00	J008022 8/8/00	J008021 8/8/00	J008017 8/8/00	J008018 8/8/00	J008019 8/8/00	J008006 8/4/00	J008009 8/7/00	J008008 8/7/00	J021001 8/9/00
2,4,6-Trichlorophenol	mg/kg	0.33	0.1 ND .	0.2 ND	0.3 ND	0.9 ND	0.2 ND	0.2 ND	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Acenaphthene	mg/kg	4.4	0.1 ND	0.2 ND	0.2 ND .	0.3 ND	0.2 ND.	0.532	0.393	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Carbazole	mg/kg	1.1	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	1.57	0.995	0.1 ND	0.1 ND	0.1 ND ·	0.1 ND
Dibenzofuran	mg/kg	1.7	0.1 ND	· 0.2 ND	0.343	1.05	0.2 ND	2.44	1.88	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Fluoranthene	mg/kg	5.5	0.1 ND	0.371	5.52	3.92	0.346	16.3	4.64	0.376	0.151	0.1 ND	1.95
Fluorene	mg/kg	5.3	0.1 ND	0.2 ND	0.74	1.21	0.2 ND	3.68	1.97	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Hexachlorobutadiene	mg/kg	0.33	0.1 ND	0.3 ND.	0.5 ND*	1 ND	0.2 ND	0.3 ND	0.5 ND*	0.2 ND	O.I ND	0.1 ND	· 0.1 ND
Isophorone	mg/kg	6.2	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0,2 ND	0.2 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Naphthalene	mg/kg	0.87	0.1 - ND	0,2 ND	0.639	2.41	0,441	6.06	10	0.223	0.237	0.1 ND	0.1 ND
Pentachlorophenol	mg/kg	0.036	0.2 ND*	0.4 ND*	0.5 ND*	I ND*	0.3 ND*	0.3 ND*	0.5 ND*	0.3 ND*	0.2 ND*	0.3 ND*	0.2 ND*
Phenanthrene	mg/kg	2.3	0.1 ND :	0.323	1.85	3.16	0.694	18.6	6.65	0.5	0.21	0.1 ND	0.979

		GSI Criteria+	IMW-01 (02'-04') J008010 8/7/00	IMW-01 (06'-08') J008011 8/7/00	IMW-05 (02'-04') J008022 8/8/00	IMW-05 (04'-06') J008021 8/8/00	IMW-06 (02'-04') J008017 8/8/00	IMW-06 (06'-08') J008018 8/8/00	IMW-060 (06'-08') \J008019 8/8/00	SMW-04 (10'-12') J008006 8/4/00	SMW-14 (06'-08') J008009 8/7/00	SMW-15 (04'-06') J008008 8/7/00	SMW-16 (0'-02') J021001 8/9/00
Arsenic	mg/kg	16	5.5	4.8	13.4	24.7	97.8	32.5	19	1.8	1.9	6.3	3.8 ND
Barium	mg/kg	75	43,8	65.9	378	128	77.3	154	161	69	78.4	69.4	89.5
Cadmium	mg/kg	1.2	0.2	0.3	12.9	1.8	0.2	14.9	6.1	0.6	0.2	0.2	0.5 ND
Chromium	mg/kg	1.8	12.5.	73.6	3350	348	16	69.8	68.3	9	11.5	15.4	944
Copper	mg/kg	32	16.5	19.2	5790	427	15.2	128	103	11.9 -	8.8	20.5	22.8
Lead	mg/kg	21	28.6	30.1	791	234	18	145	177	18.4	6.9	8.7	17
Mercury	mg/kg	0.13	0.37	0.15	22900	3440	2.61	4.46	3.6	1.59	0.14	0.05 ND	0.05 NI)
Selenium	mg/kg	0.41	0.6	0.2 ND	82.1	6.2	0.8	0.5	1.1	0.2 ND	0.5	0.2 ND	3.8 ND
Zinc	mg/kg	47	54.7	81.7	855	256	36.7	546	415	42.1	19.5	54	63.8

INORGANICS	SAMPLE #	GSI Criteria+	IMW-01 (02'-04') J008010 8/7/00	IMW-01 (06'-08') J008011 8/7/00	IMW-05 (02'-04') J008022 8/8/00	IMW-05 (04'-06') J008021 8/8/00	IMW-06 (02'-04') J008017 8/8/00	IMW-06 (06'-08') J008018 8/8/00	IMW-060 (06'-08') J008019 8/8/00	SMW-04 (10'-12') J008006 8/4/00	SMW-14 (06'-08') J008009 8/7/00	SMW-15 (04'-06') J008008 8/7/00	SMW-16 (0'-02') J021001 8/9/00
Chloride	mg/kg	1000	1270	1240	1530	1410	1330	1240	1310	1570	1400	1490	N/A
Cyanide, Total	mg/kg	0.4	0.2	. 0.3	3.8	4.2	22.8	5.8	5.5	1	1.1	2.7	0.3
Nitrogen, Ammoni	a mg/kg	0.58	49	182	28	47	16 ND*	22	39	37	161	24	16 ND*

⁺ Source - Operational Memorandum No. 18 or MDEQ Background Value.

ĝi

Bold results indicate GSI Criterion exceedance.

Indicates laboratory non-detect with MDL greater than GSI criterion.

ND - Non-Detect (Not reported above laoratory detection limits).

N/A - Not analyzed

SA	MPLE#	GSI	SMW-17 (0'-02')	SMW-18 (0'-02')	SMW-19 (0'-02')	SMW-20 (04'-06')	SMW-21 (02'-04')	SMW-22 (04'-06')	SMW-23 (04'-06')	TP-1 COMP	TP-2 COMP	TP-3 COMP	TP-30 COMP
VOLATILE ORGA	NICS	Criteria ⁺	J021002 8/9/00	J021003 8/9/00	J021004 8/9/00	J008016 8/7/00	J008012 8/7/00	J008013 8/7/00	J008020 8/8/00	J069007 8/31/00	J069002 8/30/00	J069005 8/31/00	J069006 8/31/00
1,2-Dichlorobenzene	mg/kg	0.36	0.2 ND	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0,2 ND	0.2 ND	0.09 ND	0.1 ND	0.09 ND	0.1 ND
1,2-Dichloroethane	mg/kg	0.12	0.2 ND*	0.3 ND*	0.4 ND*	0.3 ND*	0.3 ND*	0.2 ND*	0.3 ND*	0.2 ND*	0.3 ND*	0.2 ND*	0.2 ND*
1,2-Dichloropropane	mg/kg	0.18	0.1 ND	0.2 ND*	0.3 ND*	0.2 ND*	0.2 ND*	0.1 ND	0,2 ND*	0.1 ND	0.2 ND*	0.1 ND	0.1 ND
1,4-Dichlorobenzene	mg/kg	0.29	0.1 ND	0.06 ND	0.09 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.05 ND	0.08 ND	0,05 ND	0.08 ND
Acetone	mg/kg	34	2 ND	3 ND	3 ND	4 ND	5 ND	4 ND	4 ND	3 ND	4 ND	4 ND	57
Benzene	mg/kg	0.24	0.04 ND	0.06 ND	0.08 ND	0.05 ND	0.05 ND	0.04 ND	0.05 ND	0.03 ND	0.8	0.03 ND	0.34
Ethylbenzene	mg/kg	0.36	0.1 ND	0.36	0.1 ND	0,1 ND	0.1 ND	0.1 ND	0.1 ND	0:08 ND	0.1 ND	0.77	2.8
m,p-Xylene	mg/kg	0.7	0.05 ND	0.67	0.06 ND	0.06 ND	0.28	0.05 ND	0.06 ND	0.22	0.18	2.3	6.2
Methylene chloride	mg/kg	0.94	0.1 ND	0.2 ND	0.2 ND	0.1 ND	0,2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
o-Xylene	mg/kg	0.7	0.06 ND	0.52	0.08 ND	0.08 ND	0.08 ND	0.06 ND	0.08 ND	0.11	0.07 ND	1.1	2.9
Toluene	mg/kg	2.8	0.05 ND	0.65	0.06 ND	0.06 ND	1.2	0.05 ND	0.11	0.45	0.42	1.6	3.7
Trichloroethene	mg/kg	0.58	0.1 NĐ	0,2 ND	0.3 ND	0.2 ND	0.2 ND	0.1 ND	0.2 ND	. 0.43	0.2 ND	0.1 ND	0.1 ND
Vinyl chloride	mg/kg	0.3	0.07 ND	0.1 ND	0.1 ND	0,09 ND	0.1 ND	0.08 ND	0.09 ND	0.06 ND	0.09 ND	0.06 ND	0.08 ND
Xylenes, total	mg/kg	0.7	GIA 90.0	1.19	0.06 ND	0.08 ND	0.28	0.06 ND	0.08 ND	0.33	0.18	3.3	9.1

	SAMPLE	# GSI	SMW-17 (0'-02')	SMW-18 (0'-02')	SMW-19 (0'-02')	SMW-20 (04'-06')	SMW-21 (02'-04')	SMW-22 (04'-06')	SMW-23 (04'-06')	TP-1 COMP	TP-2 COMP	TP-3 COMP	TP-30 COMP
SEMIVOLATI	LE	Criteria+	J021002 8/9/00	J021003 8/9/00	J021004 8/9/00	J008016 8/7/00	J008012 8/7/00	J008013 8/7/00	J008020 8/8/00	J069007 8/31/00	J069002 8/30/00	J069005 8/31/00	J069006 8/31/00
2,4,6-Trichlorophenol	mg/kg	0.33	0.1 ND	0,1 ND	0.1 ND	0.2 ND	0.3 ND	0.1 ND	0.1 ND "	0.1 ND	0.2 ND	0.1 ND	0.1 ND
Acenaphthene	mg/kg	4.4	0.159	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.296	0.195	0.1 ND
Carbazole	mg/kg	1.1	0.114	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.108	-0.1 ND	. 0.883	0.762	0.254
Dibenzofuran	mg/kg	1.7	0.156	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0,252	0.1 ND	0.42	1.76	1.62	0.516
Fluoranthene	mg/kg	5.5	- 2,29	0.333	0.406	0.781	0.366	1.47	2.33	3,21	6.26	4.16	1.4
Fluorene	mg/kg	5.3	0.116	0.1 ND	0.1 ND	0.1 ND	0.2 ND	' 0.1 ND	0,1 ND	0.229	2.06	1.86	0.568
Hexachlorobutadiene	mg/kg	0.33	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.5 ND*	0.3 ND	0.3 ND	- 0.1 ND	0.2 ND	0.1 ND	0.1 ND
Isophorone	mg/kg	6,2	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.44	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND
Naphthalene	mg/kg	0.87	0.167	0:213	. 0,323	0.308	0.2 ND	0.853	0.127	0.969	5.78	9.13	2.25
Pentachlorophenol	mg/kg	0.036	0.2 ND*	0.2 ND*	0.2 ND*	0.2 ND*	0.4 ND*	0.2 ND*	0.2 ND*	0.2 ND*	0.3 ND*	0.2 ND*	0.3 ND*
Phenanthrene	mg/kg	2.3	1.21	0.34	0.39	0.491	0.268	0.945	1.53	2:36	9.77	5.45	1.85

		GSI Criteria+	SMW-17 (0'-02') J021002 8/9/00	SMW-18 (0'-02') J021003 8/9/00	SMW-19 (0'-02') J021004 8/9/00	SMW-20 (04'-06') J008016 8/7/00	SMW-21 (02'-04') J008012 8/7/00	SMW-22 (04'-06') J008013 8/7/00	SMW-23 (04'-06') J008020 8/8/00	TP-1 COMP J069007 8/31/00	TP-2 COMP J069002 8/30/00	TP-3 COMP J069005 8/31/00	TP-30 COMP J069006 8/31/00
Arsenic	mg/kg	16	6	8.8	8.5	5.2	10:4	6.3	8	14.4	27.5	8.6	4
Barium	mg/kg	75	109	70.6	411	96.5	146	86.9	99.8	375	88.9	111	93.6
Cadmium	mg/kg	1.2	0.8	0.4	.0.6	0.4	1.1	0.3	0.3	2.6	1	0.7	. 0.7
Chromium	mg/kg	18	295	85.2	178	19.1	24	27	26.7	51.7	49.5	17.4	17.5
Copper	mg/kg	32	55.3	21.4	63.2	27.6	.68.5	52.5	28.1	268	90.4	53.8	40.2
Lead	mg/kg	21	91.3	68.2	126	75.8	156	265	52.3	564	193	195	155
Mercury	mg/kg	0.13	0.25	0.14	0.77	4.9	7.29	20.2	6.66	2.95	0.84	6.63	18.1
Selenium	mg/kg	0.41	1 ND	l ND	I ND	0.6	0.8	0.3	(1.2 NI)	L ND	I ND	0.2	0.2
Zinc	mg/kg	47	276	105	207	62.7	254	63.7	80.5	508	257	112	76.5

INORGANICS	SAMPLE #	GSI Criteria+	SMW-17 (0'-02') J021002 8/9/00	SMW-18 (0'-02') J021003 8/9/00	SMW-19 (0'-02') J021004 8/9/00	SMW-20 (04'-06') J008016 8/7/00	SMW-21 (02'-04') J008012 8/7/00	SMW-22 (04'-06') J008013 8/7/00	SMW-23 (04'-06') J008020 8/8/00	TP-1 COMP J069007 8/31/00	TP-2 COMP J069002 8/30/00	TP-3 COMP J069005 8/31/00	TP-30 COMP J069006 8/31/00
Chloride	mg/kg	1000	N/A	N/A	N/A	1310	1320	1510	1380	N/A	N/A	N/A	N/A
Cyanide, Total	mg/kg	0.4	0.5	0.3	0.7	0.2	0.9	4.1	0.5	1.9	0.6	4.5	3
Nitrogen, Ammoni	ia mg/kg	0.58	60	35	30	35	74	16 ND*	102	32	135	83	135

⁺ Source - Operational Memorandum No. 18 or MDEQ Background Value.

W:\BASF\Riverview\PhaseII\Report\GS1-2.xls, Soils

Bold results indicate GSI Criterion exceedance.

^{*} Indicates laboratory non-detect with MDL greater than GSI criterion.

ND - Non-Detect (Not reported above laoratory detection limits).

N/A - Not analyzed

Table 7
BASF Riverview, Michigan
Soil Samples
GSI Criteria Comparison
Printed: 1/31/0

	SAMPLE#	GSI	TP-4 COMP	TP-5 COMP	TP-6 COMP
VOLATILE ORG	ANICS	Criteria ⁺	J069004 8/31/00	J069001 8/30/00	J069003 8/31/00
1,2-Dichlorobenzene	mg/kg	0.36	0.1 ND	0.1 NI)	0.1 ND
1,2-Dichloroethane	mg/kg	0.12	0.3 ND*	0.2 ND*	0.3 ND*
1,2-Dichloropropane	mg/kg	0.18	0.2 ND*	0.1 ND	0.2 ND*
1,4-Dichlorobenzene	mg/kg	0.29	0.08 ND	0.07 ND	0.09 ND
Acetone	mg/kg	34	1 ND	4 ND	5 ND
Benzene	mg/kg	0.24	0.05 ND	0.04 ND	0.05 ND
Ethylbenzene	mg/kg	0.36	0,1 ND	0.1 ND	0.1 ND
m,p-Xylene	mg/kg	0.7	0.06 ND	0.05 ND	0.06 ND
Methylene chloride	mg/kg	0.94	0.1 ND	0.1 ND	0.1 ND
o-Xylene	mg/kg	0.7	0.07 ND	0.06 ND	0.06 ND
Toluene	mg/kg	2.8	0.06 ND	0.05 ND.	0,06 ND
Trichloroethene	mg/kg	0.58	0.2 ND	0.1 ND	0.2 ND
Vinyl chloride	mg/kg	0.3	0.09 ND	0.08 ND	0.09 ND
Xylenes, total	mg/kg	0.7	0.06 ND	0.05 ND	0.07 ND

	SAMPLE	# GSI	TP-4 COMP	TP-5 COMP	TP-6 COMP
SEMIVOLATI	LE	Criteria+	J069004 8/31/00	J069001 8/30/00	J069003 8/31/00
2,4,6-Trichlorophenol	mg/kg	0.33	0.2 ND	0.1 ND	0.623
Acenaphthene	mg/kg 4.4		1.71	0.1 ND	0.3 ND
Carbazole	mg/kg	1.1	7.97	0.642	0.948
Dibenzofuran	mg/kg	1.7	18.2	1.25	2.19
Fluoranthene	mg/kg	5.5	39.8	7.88	7.68
Fluorene	mg/kg	5.3	24	1.11	2.25
Hexachlorobutadiene	mg/kg	0.33	0,2 ND	0.1 ND	0.3 ND
Isophorone &	mg/kg	6.2	0.2 ND	0.1 ND	0.3 ND
Naphthalene	mg/kg	0.87	41.5	3.74	10.9
Pentachlorophenol	mg/kg	0.036	0,5 ND*	0.3 ND*	0.5 ND*
Phenanthrene	mg/kg	2.3	49.4	7.51	10.2

		GSI Criteria+	TP-4 COMP J069004 8/31/00	TP-5 COMP J069001 8/30/00	TP-6 COMP J069003 8/31/00
Arsenic	mg/kg	16	9.2	13.4	12
Barium	mg/kg	75	124	139	135
Cadmium	mg/kg	1.2	0.7	0.5	0.4
Chromium	mg/kg	18	31.4	21.6	43.5
Copper	mg/kg	32	94	37.6	45.8
Lead	mg/kg	21	387	125	177
Mercury	mg/kg	0.13	175	10.4	46
Selenium	mg/kg	0.41	1.3 ND	1 ND	I ND
Zinc	mg/kg	47	131	97.4	144

	SAMPLE #	GSI	TP-4 COMP	TP-5 COMP	TP-6 COMP
INORGANICS	****	Criteria+	J069004 8/31/00	J069001 8/30/00	J069003 8/31/00
Chloride	mg/kg	1000	N/A	N/A	N/A
Cyanide, Total	mg/kg	0.4	2	4.9	0.9
Nitrogen, Ammonia	mg/kg	0.58	71	67	66

⁺ Source - Operational Memorandum No. 18 or MDEQ Background Value.

Bold results indicate GSI Criterion exceedance.

[•] Indicates laboratory non-detect with MDL greater than GSI criterion.

ND - Non-Detect (Not reported above laoratory detection limits).

N/A - Not analyzed

Table 8
BASF Riverview, Michigan
Soil Samples
Detected PCBs
Printed: 1/31/0

	SAMPLE#	DMW-09	(02'-04')	DMW-09	(06'-08')	DMW-09	(10'-12')	DMW-09	(26'-28')	DMW-10	(02'-04')	DMW-10	(08'-10')
PCBs	<u> </u>	1997001	7/27/00	1997002	7/27/00	1997003	7/27/00	J007001	8/2/00	J001001	7/31/00	J001002	7/31/00
Arochlor-1242	mg/kg	0.33	ND	0.33	ŅD	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1248	mg/kg	0.33	ND	0.33	ND	0.33	ND.	0.33	ND	0.33	ND	0.33	ND
Arochlor-1254	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	ND	2.8	14	2.2	3
Arochlor-1260	mg/kg	0.33	ND	0.33	NĎ								

	SAMPLE#	DMW-10	(10'-12')	DMW-10 (24'-26')		DMW-11	DMW-11 (04'-06')		DMW-11 (06'-08')		DMW-11 (24'-26')		(04'-06')
PCBs	5/1//11 22:	J001003	7/31/00	J007002	8/2/00	J001006	7/31/00	J001008	7/31/00	J008001	8/3/00	J001007	7/31/00
Arochlor-1242	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	NĎ	0.33	ND	0.33	NĎ
Arochlor-1248	mg/kg	0,33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1254		0.33	ND	0.33	ND	1.	4	0.33	ND	0.33	ND	0.7	15
Arochlor-1260	mg/kg	0.33	ND	0.33	ND	0.33	ND	0,33	ND	0.33	ND	0.33	ND

PCBs	SAMPLE#	DMW-12	` ,	DMW-12 (0	,	DMW-12 (` '	DMW-12	` '	DMW-12	•	DMW-120	` ' 1
FCBS	L	J002007	8/1/0u	J002004 8	8/1/00	J002005_	8/1/00	J002006	8/1/00	<u>.J008004</u>	8/3/00	J008003	8/3/00
Arochior-1242	mg/kg	0.33	ND	0.33 N	1D	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1248	mg/kg	0.33	ND	0.33 N	ND	0.33	ND	0.33	ND	0.33	ND	0.33	NĎ
Arochlor-1254	mg/kg	0.33	ND	0.94		5.01	1	0.33	ND	0.33	ND	0.33	ND
Arochlor-1260	mg/kg	0.33	ND	0.33 N	ID OI	0.33	ND	0.33	ND	0.33	NÚ	0.33	ND

PCBs	SAMPLE#	DMW-13	(04'-06')	DMW-13 (06'-08')	DMW-13 (10'-12')	DMW-13 (26'-28')	IMW-01 (02'-04')	IMW-01 (06'-08')	
PCBs	STATE DE	J002001	7/31/00	J002002 7/31/00	J002003 7/31/00	J008002 8/3/00	J008010 8/7/00	J008011 8/7/00	
Arochlor-1242	2 mg/kg	0.33	ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	
Arochlor-1248	mg/kg	0.33	ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	
Arochlor-1254	mg/kg	0.33	ND	1.25	0.33 ND	0.33 ND	0.33 ND -	0.33 ND	
Arochlor-1260) mg/kg	0.33	ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	

⁺ Source - Operational Memorandum No. 18 or MDEQ Background Value.

Items in bold are above detection limts.

ND - Non-Detect (Not reported above laoratory detection limits).

Table 8
BASF Riverview, Michigan
Soil Samples
Detected PCBs
Printed: 1/31/0

The second of the first term of the second s

PCBs S	AMPLE#	IMW-05 (02'-04') J008022 8/8/00	IMW-05 (04'-06') J008021 8/8/00	IMW-06 (02'-04') J008017 8/8/00	IMW-06 (06'-08') J008018 8/8/00	IMW-060 (06'-08') J008019 8/8/00	SMW-04 (10'-12') J008006 8/4/00
Arochlor-1242	mg/kg	0.33 ND	0.33 ND				
Arochlor-1248	mg/kg	3.97	0.895	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Arochlor-1254	mg/kg	0.33 ND	.0.33 ND				
Arochlor-1260	mg/kg	0.33 ND	0.33 ND	0.33 ND	1.35	0.33 ND	0.33 ND

PCBs SAMPLE#		SMW-14 J008009	(06'-08') 8/7/00	SMW-15 (J008008	04'-06') 8/7/00	SMW-16 J021001	(0'-02') 8/9/00	SMW-17 J021002	(0'-02') 8/9/00	SMW-18 J021003	8 (0'-02') 8/9/00	SMW-19 J021004	(0'-02') 8/9/00
Arochlor-1242	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1248	mg/kg	0.33	ND	0.33.	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1254	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0,33	ND	0.33	ND
Arochlor-1260	mg/kg	0.33	ND	0.33	ND.	0.33	ND	0.33	ND	0.33	ND	0.33	ND

	SAMPLE#	SMW-20	(04'-06')	SMW-21	(02'-04')	SMW-22	(04'-06')	SMW-23	(04'-06')	TP-1 C	OMP	TP-2 (OMP
PCBs	<u> </u>	J008016	8/7/00	J008012	8/7/00	J008013	8/7/00	J008020	8/8/00	J069007	8/31/00	J069002	8/30/00
Arochlor-1242	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ŅD	0.33	ND
Arochlor-1248	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1254	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	ND	7.1	15	2.3	36
Arochlor-1260	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND

	SAMPLE#	TP-3 C	OMP	TP-30	COMP	TP-4 C	COMP	TP-5 C	COMP	TP-6 (OMP
PCBs	SALVII DE	J069005	_8/31/00	J069006	8/31/00	J069004	8/31/00	J069001	8/30/00	J069003	8/31/00
Arochlor-1242	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1248		0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	NĎ
Arochlor-1254	mg/kg	0.3	64	0.3	62	1.1	13	2,1	76	0.3	63
Arochlor-1260	mg/kg	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND

⁺ Source - Operational Memorandum No. 18 or MDEQ Background Value.

Items in bold are above detection limts.

ND - Non-Detect (Not reported above laoratory detection limits).

Table 9
BASF Riverview, Michigan
Soil Samples
Detected Dioxins

Printed: 1-31-01

, i

- 1

URS

(A)

L. Lill

DMW-12 (04'-06') IMW-05 (0'-02') IMW-06 (0'-02') IMW-13 (04'-06') SMW-04 (04'-06') SAMPLE# 2234283 2234325 2234317 8/8/00 2234291 2234309 CONGENER 8/1/00 ng/kg 8/8/00 ng/kg ng/kg 8/3/00 ng/kg 8/3/00 ng/kg 1,2,3,4,6,7,8-HpCDD 3300 0.92 J 540 1700 1700 2 J 6500 1100 HpCDD, Total 3300 3300 39 0.28 ND 380 61 1,2,3,4,6,7,8-HpCDF 61 52 0.63 ND 7.9 J 1,2,3,4,7,8,9-HpCDF 4.9 J 4.9 J HpCDF, Total 0.45 ND 1900 95 370 370 5 J 0.45 ND 19 ND 9.9 9.9 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 0.43ND 100 50 50 39 13 J 26 1,2,3,7,8,9-HxCDD 0.46 ND 26 570 HxCDD, Total 0.45 ND 940 260 570 110 8.9 1,2,3,4,7,8-HxCDF 0.23 ND 17 J 8.9 ND 30 8.8 E 17 E 17 E 1,2,3,6,7,8-HxCDF 0.254.7 J 1.7 J 1.7 J 0.19 ND 16 ND 1,2,3,7,8,9-HxCDF 4.4 I 0.33 25 I 5 5 2,3,4,6,7,8-HxCDF ND HxCDF, Total 0.25 ND 560 65 110 110 4.9 I 6.3 I 13 0.4 ND 13 1,2,3,7,8-PeCDD 83 4.5 ND 8.1 J 83 PeCDD, Total 0.4ND 8.6 J 5.5 1,2,3,7,8-PeCDF 0.29 ND 40 5.5 33 8.3 J 2,3,4,7,8-PeCDF 0.38 ND 4.7 J 4.7 J 180 47 30 30 PeCDF, Total 0.34 ND 2.6 ND 2.2 I 5.7 2,3,7,8-TCDD 0.22 ND 5.7 7.2 0.22 21 27 27 ND TCDD, Total 6.9 2,3,7,8-TCDF 0.23 ND 56 10 6.9 54 26 26 0.23 ND 210 TCDF, Total 5000 18000 OCDD 9.6 BJ 25000 18000 0.74 ND 1700 87 290 290 OCDF

with feel field that their their

ND = Results reported below laboratory detection limits. See Data Quality Assessment Report for qualified data. Table 10 BASF Riverview, Michigan Fill Samples GSI Criteria Comparison Printed: 1/31/0

	SAMPLE #		SB-01 (13_5'-19_5')	SB-02 (24_5'-25')	SB-09 (3_5'-8_5')	SB-10 (16'-16_5')
SEMIVOLATILE	ORGANICS	Criteria+	1989001 7/26/00	1989002 7/26/00	1989003 7/26/00	1989004 7/26/00
Naphthalene	mg/kg	0.87	0,544	0.785	2.15	0.233
Phenanthrene	mg/kg	2.3	0.955	1.46	4.08	0.76

The state of the s

METALS	SAMPLE #	GSI Criteria+	SB-01 (13_5'-19_5') 1989001 7/26/00	SB-02 (24_5'-25') 1989002 7/26/00	SB-09 (3_5'-8_5') 1989003 7/26/00	SB-10 (16'-16_5') 1989004 7/26/00
Barium	mg/kg	. 75	158	119	125	134
Cadmium	mg/kg	1.2	1.1	1.4	0.8	1.9
Chromium	mg/kg	18	33.6	35.5	47.2	69.1
Copper	mg/kg	32	27.4	47.8	72.9	53,8
Lead	mg/kg	21	129	38.8	181	335
Mercury	mg/kg	0.13	4.78	2.21	1.91	2.07
Selenium	mg/kg	0.41	0.3 ND	0.3 ND	0.4 ND	0.9
Zinc	mg/kg	47	472	141	107	138

INORGANICS	SAMPLE #	GSI Criteria+	SB-01 (13_5'-19_5') 1989001 7/26/00	SB-02 (24_5'-25') 1989002 7/26/00	SB-09 (3_5'-8_5') 1989003 7/26/00	SB-10 (16'-16_5') 1989004 7/26/00
Chloride	mg/kg	1000	1640	N/A	1700	8280
Cyanide, Total	mg/kg	0.4	0.34	1.24	1.27	7.39
Nitrogen, Ammonia	mg/kg	0.58	27	N/A	17 ND*	77

ND - Non-Detect (Not reported above laoratory detection limits).

N/A - Not analyzed

^{*} Indicates laboratory non-detect with MDL greater than GSI criterion.

s	AMPLE #	GSI	BMW-1	DMW-01	DMW-02	DMW-03	DMW-04	DMW-05	DMW-06	DMW-09		DMW-10	DMW-11	DMW-12	DMW-13	IMW-01	IMW-05	IMW-06	IMW-09	IMW-10	IMW-11 :	IMW-110	IMW-12	IMW-13	MW-A	MW-B	MW-C
	·	Criteria+	J062003	J030009	J011016	J030019	J030014	J011019	J011018	J062005	J062006	J053019	J062001	J062008	J062002	J042011	J042001	J042008	J042010	J042005	J053002	J053003	J053001	J053007	J030013	J030004	J030005
VOLATILE ORGANICS	. ;	Criteria	8/25/00	8/11/00	8/9/00	8/15/00	8/14/00	8/9/00	8/9/00	.8/28/00	8/28/00	8/23/00	8/24/00	8/29/00	8/24/00	8/18/00	8/16/00	8/17/00	8/18/00	8/17/00	8/22/00	8/22/00	8/22/00	8/22/00	8/11/00	8/10/00	8/10/00
1,2-Dichlorobenzene	ug/L	16	.1 ND	I ND	i ND	1 ND	I ND	I ND	1 ND	I ND	I ND	CIN I	1 NI)	I ND	I ND	· 1 ND	3 ND	3 ND	GIN E	24	IND	2 ND	2 ND	2 ND	5.4	20 ND*	I ND
1,2-Dichloroethane	ug/L	6	4 ND	. I ND	I ND	I ND	E ND	GIN I	19	1 ND	4 ND	1 NI)	CIM I	I ND	2 ND	22	- 3 ND	47	3 ND	43	3 ND	3 ND	3 ND	7 ND*	2 ND	30 ND*	. 2 ND
1,2-Dichloropropane	ug/L	9.1	3 ND	L ND	1 ND	I ND.	I ND	I ND	I ND	1 ND	1 ND	J. ND	1 ND	UND.	I ND	8.4	16	20	5,4	39	2 ND	2 ND	2 ND	22	13	20 ND*	I ND
Acetone	ug/L	1700	-90 ND	5 ND	7 ND	7 ND	7 ND	10 ND	7 ND	10 ND	IO ND	10 ND	20 ND	20 ND	· 30 NĐ	ON OI	12000	1800	1100	2300	930	1400	730	1500	760	12000	1600
Benzene	ug/L	12	T MD	I ND	i ND	UN J	1 ND	IND	1.7	I NO	1 ND	(IN)	I ND	I ND	I ND	UM I	: 17	7,7	97	40	5.3	4.4	14	150	120	5 ND	2.8
Chlorobenzene	ug/L	47	. I ND	CIN I	UM I	I ND	I ND	I. ND	1 ND	I ND	I ND	I ND	L ND	I ND	I ND	1 ND	I ND	I ND	I ND	1 ND	I ND	I. ND	I ND :	1 ND	17	7 ND .	I ND
Ethylbenzene	ug/L	18	2 ND	1 ND	i ND	I ND	I ND	I ND	1 ND	I ND	(וא ו	4 ND	I- ND	I ND	I ND	I ND	2 - ND	2 ND	2 ND	2 ND	3.9	4.5	. I ND	10	2	20 ND*	I ND
m,p-Xylene	ug/L	35	מא_ו `	I ND	FND	- I ND	מא נ	I ND	1.7	I ND	. I ND	1 NO	T ND	I ND	מאַו	I ND .	4.4	1 ND	6.1	16.	5.3	5.7	3.4	28	6.5	7 ND	טא ו
Methylene chloride	ug/L	47	5 ND	. 5 ND.	5 ND	1400	100	5 ND	400	90	89	87	72	28	6400	360											
o-Xylene	ug/L	35	. I ND	UN I	I ND	I ND	J ND	I ND	UN I	I ND	I ND	I ND	I ND	1 ND	I ND	I ND	5:7	' מא	5.2	9.3	4	1.5	3.2	21	6.6	9 ND	I ND
Styrene	ug/L	80	I ND	I ND	1 ND	I ND	I ND	I: ND	· I ND	I ND	CIN I	1 ND	ם או	UN' I	I ND	L ND	I ND	1 ND	I ND	I ND	I ND	7 ND	I ND				
Tetrachloroethene	ug/L	11	3 ND	I ND	IND	1 ND	I ND	1 ND	I ND	I ND	1 ND	I ND	I ND	I ND	l ND	I ND	3 ND	3 ND	2 ND	4.8	2 ND	2 ND	2 ND	2 ND	I ND	20 ND	I ND
Toluene	ug/L	140	I NĐ	! ND	1 ND	(INI)	. I ND	.I MD	2.8	I ND	ו אר	I ND	I ND	I ND	-1 ND	I ND	9.5	13 .	62	110	9.8	10	· 21	130	40	15	I ND
Trichloroethene	ug/L	29	3 ND	GIA	I ND	. CIN I	I ND	I ND	1 ND	I ND	1 ND	I ND	UN L	1 ND	I ND	I ND	2 ND -	: 2 ND	2 ND	2 ND	I ND	20 ND	I ND				
Vinyl chloride	ug/L	15	2 ND	2 ND	2 ND	5 MD	2 ND	2 ND	24	2 ND	2 ND	5 MD-	2 ND	2 ND	3 ND	2 ND	2 ND	16	. 5	70	27	27	2 ND	2 ND	2: ND	10 ND	2 ND
Xylenes, total	ug/L	35	(IN I	1 ND	I ND	I ND	. I ND	1 MD	1 ND	GN I	I ND	I ND	1 ND	I ND	1 ND	I ND	10.1	J ND	11.3	25:3	9.3	10.2	6.6	49	13.1	9 ND	I ND

Is.	AMPLE#	GS1	BMW-1	DMW-01	DMW-02	DMW-03	DMW-04	DMW-05	DMW-06	DMW-09	DMW-090	DMW-10	DMW-11	DMW-12	DMW-13	IMW-01	IMW-05	IMW-06	IMW-09	IMW-10	IMW-11	IMW-110	IMW-12	IMW-13	MW-A	MW-B	MW-C
			J062003	J030009	J011016	J030019	J030014	J011019	J011018	J062005	J062006	J053019	J062001	J062008	J062002	J042011	J042001	J042008	J042010	J042005	J053002	J053003	J053001	J053007	J030013	J030004	J030005
SEMIVOLATILE ORGANIC	CS	Criteria+	8/25/00	8/11/00	8/9/00	8/15/00	8/14/00	8/9/00	8/9/00.	8/28/00	8/28/00	8/23/00	8/24/00	8/29/00	8/24/00	8/18/00	8/16/00	8/17/00	8/18/00	8/17/00	8/22/00	8/22/00	8/22/00	8/22/00	8/11/00	8/10/00	8/10/00
1,2,4,5-Tetrachiorobenzene	ug/L .	2.8	2 ND*	2 ND*	4 ND ^a	4 ND*	2 ND*	4 ND*	4 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2 ND*	7 ND*	4 ND*	2 ND*	4 ND*	4 ND*	4 ND*	2 ND*	4 ND*	2 ND*	10 ND*	2 ND*
2,4,6-Trichlorophenol	ug/L	4.4	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	55.3	6 ND	26.4	8:31	1 ND	4 ND	3.31	13.7	2 ND	63.2	5.45
2,4-Dichlorophenol	ug/L	19	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ~ ND .	2 ND	2 ND :	2 ND	2 ND.	2 ND	2 ND	2 ND	50.8	4 ND	2 ND	6.84	4 ND	4 ND	2 ND	34.1	2 ND	44.8	2 ND
2,4-Dimethylphenol	ug/L	380	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND -	2 ND	2 ND	2 ND	: 2 ND	2 ND	2 ND	2 ND	4 ND :	800	2 ND	228	123	1.73	2 ND	16.8	2 ND	82	20.5
2-Chlorophenol	·ug/L	22	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	25.4	4 ND	2 ND :	4 ND	4 ND	4 ND	2 ND	12.6	2 ND	21.4	2.58
Acenaphthene	ug/L	19	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	4 ND	20.3	2 ND	12:8	4 ND	4 ND	2 ND	6.38	2 ND	23.8	2 ND
Aniline	ug/L	20	2 ND	2 ND	4 ND	-I ND	2 ND	. 4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 · ND	2 ND	4 ·ND	4 ND	2 ND	4 ND	4 ND	4 ND	2 ND	4 ND	2.31	5 ND	2 ND
bis(2-Ethylhexyl)phthalate	ug/L	32	2 ND	. 2 ND	4 ND	246	10.7	868	204	2 ND	2 ND	2 ND	3.98	2 ND	2 ND	42	159	267	2 ND:	527	4 ND	4 ND	94.5	498	30.8	159	2 ND
Carbazole	ug/L	10	2 ND	· 2 ND	4 ND	4 ND	2 ND	: 4 ND	10.8	2 ND	43.1	173	2 ND	76.7	4 ND	4 ND	2 ND	25.3	2 ND	102	2.99						
Dibenzofuran	ug/L	4	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	5.77	2 ND	2 ND	2 ND	2 ND	. 2 ND	2 ND	2 ND	27.8	90	2 ND	56.4	4 ND	4 ND	2 ND	26.5	2 ND	67.4	2 ND
Fluoranthene	ug/L	1.6	2 ND*	2 ND*	4 ND*	4 ND*	2 ND*	4 ND*	4 ND*	3 ND*	2 ND*	88.4	235	2 ND*	84.3	9.7	10.9	2.4	68.7	3 ND*	230	2 ND*					
Fluorene	ug/L	12	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	5.51	2 ND	2. ND	2 ND	2 ND	2 ND	2 ND	2 ND	40.6	137	2 ND	51.5	4 ND	4 ND	2 ND	34.9	2 ND	101	2 ND
Hexachlorobutadiene	ug/L	0.053	2 ND*	2 ND*	4 ND*	-I ND*	2 ND*	4 ND*	4 NID*	2 ND*	6 ND*	6 ND*	2 ND*	4 ND*	I ND*	4 ND*	2 ND*	4 ND*	2 ND*	10 ND*	2 ND*						
m,p-Cresol	ug/L	71	6 ND	6 ND	IO ND	10 ND	6 ND	IO ND	10 ND	6 ND	416	2330	12	895	326	315	31.3	419	. 36	609	55.4						
Naphthalene	ug/L .	13	2 ND	2 · ND	4 ND	4 ND	2 ND	4 ND	279	5. ND	2 ND	2 ND	2 NO	2 ND	2 ND	2 ND	142	802	14.3	525	4.71	5.41	3.69	248	17.3	451	16.5
o-Cresol	ug/L	71	2 ND	2 ND	4 ND	1 ND	2 ND	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	59.1	681	2 ND	259	81.8	75.2	3.84	45.7	14	121	17.4
Pentachlorophenol	ug/L	1.8	4 ND+	4 NI)*	8 ND*	8 ND*	4 ND*	8 ND*	8 ND*	4 ND*	4 ND*	4 ND*	4 ND+	4 ND*	4 ND*	4 ND*	226	267	4 ND*	50.8	41.8	42.8	10.2	38.8	23.2	259	24.1
Phenanthrene	ug/L	5	2- ND	2 ND	4 ND	4 ND	2 ND	4 ND	5.62	2 ND	125	430	2 ND	186	8.8	9.92	6.03	126	2 ND	352	3.35						
Phenol	ug/L	210	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	9.82	2 ND	467	2500	20.2	980	216	230	179	611	30.5	437	25.5						

	г	SAMPLE #	CSI	BMW-1	DMW-01	DMW-02	DMW-03	DMW-04	DMW-05	DMW-06	DMW-09	DMW-090	DMW-10	DMW-11	DMW-12	DMW-13	IMW-01	IMW-05	IMW-06	IMW-09.	IMW-10	IMW-11	IMW-110	IMW-12	IMW-13	MW-A	MW-B	MW-C
PCBs		L	Criteria+	J062003	J030009	J011016	J030019	J030014	J011019	J011018	J062005	J062006	J053019	J062001 ;	J062008	J062002	J042011	J042001	J042008	J042010	J042005	J053002	J053003	J053001	J053007	J030013	J030004	J030005
1003			Cilleria	8/25/00	8/11/00	8/9/00	8/15/00	8/14/00	8/9/00	8/9/00	8/28/00	8/28/00	8/23/00	8/24/00	8/29/00	8/24/00	8/18/00	\ 8/16/00	8/17/00	8/18/00	8/17/00	8/22/00	8/22/00	8/22/00	8/22/00	·8/11/00	8/10/00	8/10/00
Arochlor-124	2	ug/L		0.2 ND	0.2 ND	0.2 NID	0.2 ND	6.2 ND :	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND						
Arochlor-124	8	ug/L		0.2 ND	0.5 ND	. 0'5 MD	0.2 ND	0.2 ND	0.2 ND:	0.2 ND	0.2 ND	0.2 ND	0.2 NO	0.2 ND	0,2 ND	0:2 ND	0.2 ND	-1	0.2 ND	3.74	0.2 ND							
Arochlor-125	4	ug/L		62: ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 NO	0.2 ND	0.2 ND	0.2 ND	0.2 ND	14.3	0.2 ND	48.2	0.2 ND	0.2 ND	3.61	4.35	0.2 ND	0.2 ND	0.2 ND
Arochlor-126	0	ug/L		0.2 ND	0.2 NO.	. 0.2 ND	0.2 ND	0.2 ND	0:2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	.0.2 NI)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0:2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	.0.2 ND	0.2 ND	0:2 ND
	Total PCBs	8 ug/L	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	14.3	ND	48.2	ND	ND	3.61	4.35	ND	3.74	ND

	SANDLE # COL BMW-1 DMW-01 DMW-02 DMW-03 DMW-04 DMW-05 DMW-06 DMW-09 DMW-09 DMW-10 DMW-11 DMW-12 DMW-13 IMW-01 IMW-05 IMW-06 IMW-09 IMW-10 IMW-11 IMW-110 IMW-12 IMW-13 MW-A MW-B MW-C																										
	SAMPLE #	GSI	BMW-I	DMW-01	DMW-	2 DMW-0	3 DMW-04	DMW-05	DMW-06	DMW-09	DMW-090	DMW-10	DMW-11	DMW-12	DMW-13	IMW-01	IMW-05	IMW-06	IMW-09	IMW-10	IMW-11	IMW-110	IMW-12	IMW-13	MW-A	MW-B	MW-C
I			J062003	J030009	J01101	6 J030019	J030014	J011019	J011018	J062005	J062006	J053019	J062001	J062008	J062002	J042011	J042001	J042008	J042010	J042005	J053002	J053003	J053001	J053007	J030013	J030004	J030005
METALS		Criteria+	8/25/00	8/11/00	8/9/00	8/15/00	8/14/00	8/9/00	8/9/00	8/28/00	8/28/00	8/23/00	8/24/00	8/29/00	8/24/00	8/18/00	8/16/00	8/17/00	8/18/00	8/17/00	8/22/00	8/22/00	8/22/00	8/22/00	8/11/00	8/10/00	8/10/00
Arsenic	mg/L	0.05	0.004 ND	0:004 N	0.004	ID 0.004 N	D 0.004 Nf	0.004 ND	0.025	-0.004 ND	0.004 ND	0.004 ND	0.004 ND	0.004 ND	0.004. ND	0:005	0.773	15.7	0.081	13.1	5,02	4.89	0.318	1.49	0.068	0.683	0.079
Barium	mg/L	0.48	0.021	0:034	0.057	0.018	0.021	0.028	0.023	0.043	0.044	0:057	0.105	0:055	0.094	0.098	0.067	0.026	0.062	0.128	0.139	0.128	0.343	0.329	0.011	0.043	0.043
Cadmium	mg/L	0.0025	0.0005 NE	0.0005 N	0.0005	ND 0.0005 1	ND 0.0005 N	0.0005 NE	0.0005 NE	0,0005 NE	0.0005 ND	0.0005 ND	0:0005 NE	0.0005 NE	0.0005 ND	0.0005 ND	0.006	0.002 ND	0.0005 ND	0:002 ND	0.0005 ND	0:002 ND	0.002 ND	0.002 ND	0.0005 ND	0.0005 ND	0.0005 ND
Chromium	mg/L	0.08	0.004 ND	0.004 N				0.004 ND	0.004 ND	0.004 ND	0.004 ND	0.004 ND	0.007	0:01:2	0.004 ND	0.094	0.197	0.255	0.051	0.405	0.901	0.857	1.22	0.684	0.049	0.194	0.013
Copper	mg/L	0.097	0:004 ND	0.007	0.004	ID 0.004 N	D 0,004 NO	0.006	0.004 ND	0.008	0.008	0.004 ND	0.011	0.01:1	0.004	0.014	0.078	0.022	0:032	0.016	0.028	0.04	0.014	0.032	0.004 ND	0.009	0.019
Lead	mg/L	0.011	0.002 ND	0.008	0.004	0.002 N	D 0.002	0.004	0:004	0.007	0.008	0.002	0.005	0.006	. 0:01	.0.004	0.048	0.025	0.064	0.059	0.008 ND	0.01	0.02	0.009	0.004	0.014	0.019
Mercury	mg/L	0:0000013	0.0002 ND4	0:0002 NE	0.0002 N	D*0.0002 N	D*0.0002 ND	*0.0002 ND*	0.0002 ND	0.0002 ND*	0.0002 ND*	0.0996	0.487	0.0219	0.487	0.0387	0.0494	0.0016	2.32	0,0021	0.019	0.0013					
Selenium	mg/L	0.005	0.004 ND	.0.004 NI	0.004	0.004 N	D 0.004 NE	0.005	0.004 ND	0,004 ND	0:004 ND	0:004	0.004 ND	0.006	0.004 ND	0.004 NID	0.01	0.013	0.004 ND	0.015	0.024	0.023	0.018	0.033	0.004 ND	0.008	0.004 ND
Zinc	mg/L	0.13	0.01 ND	0.022	0:024	0.013	0.019	0.032	0.01 ND	0:071	0.066	0.013.	0.027	0.02	0.018	0.01 ND	0.206	0:045	0.058	0.068	0.044	0.062	0.046	0:081	0.02	0.035	0.014

	SAMPLE #	GSI	BMW-1	DMW-01	DMW-02	DMW-03	DMW-04.	DMW-05	DMW-06	DMW-09	DMW-090	DMW-10	DMW-11	DMW-12	DMW-13	IMW-01	1MW-05	IMW-06	IMW-09	IMW-10	IMW-11	IMW-110	IMW-12	: IMW-13	MW-A	MW-B	MW-C
TINODO LA HOSE	SAMIFLE #	Criteria+	J062003	J030009	J011016	. J030019	J030014	J011019	J011018	J062005	J062006.	J053019	J062001	J062008	J062002	J042011	J042001	J042008	J042010	J042005	J053002	J053003	J053001	J053007	J030013	J030004	J030005
INORGANICS		Cinteria.	8/25/00	8/11/00	8/9/00	8/15/00	8/14/00	8/9/00	8/9/00	8/28/00	8/28/00	8/23/00	8/24/00	8/29/00	8/24/00	8/18/00	8/16/00	8/17/00	8/18/00	8/17/00	8/22/00	8/22/00	8/22/00	8/22/00	8/11/00	8/10/00	8/10/00
Chloride	mg/L	50	158	192	557	402	641	151	661	242	243	142	328	N/A	166	487	1100	827	849	949	933	835	1180	893	441	1010	197
Cyanide, Total	mg/L	0.02	0:005 ND	0.005 ND	0.008	0.005 ND	0.005 ND	0.005 NID	0.029	0.005 ND	:0.005 ND	0:005 ND	0:01:7	0.005 ND	0.005 ND	0.039	3:3	9.28	1.12	15.7	5.95	6.04	16.5	7.62	0,78	2.91	5,65
Nitrogen, Ammonia	mg/L	0:029	0.67	0.25 ND	0.42	0.27	0.94	0.28	0.72	0.76	0.56	1,08	0.46	N/A	0.67	0.47	8.8	33.4	4.1	38.3	40.1	40.3	58.7	95.1	7.98	12,3	3,45

Bold results indicate GSI Criterion exceedance

N/A - Not analyzed

Indicates laboratory non-detect with MDL greater than GSI criterion.

+ Source - Operational Memorandum No. 18 or MDEQ Background Value. ND - Non-Detect (Not reported above laoratory detection limits).

	SAMPLE#	GSI	MW-D J011012	MW-D0	MW-E J011017	MW-G J011007	MW-H J030020	MW-1 J030021	MW-J J042003	MW-K J030015	PZ-1 J030006	PZ-2 J030011	PZ-3 J030012	PZ-4 J030002	PZ-5	PZ-6	SB-01	SB-02	SB-03 J011015	SMW-01 J030018	SMW-02 J011010	SMW-03 J030010	SMW-04 J053017	SMW-04-99 J011003	SMW-040 J053016	SMW-05 J042002	SMW-05-
VOLATILE ORGANIC	s	Criteria+	8/8/00	J011013 8/8/00	8/9/00	8/7/00	8/15/00	8/15/00	8/16/00	8/14/00	8/10/00	8/11/00	8/11/00	8/10/00	J030003 8/10/00	J030001 8/10/00	J011011 8/8/00	J011009 8/8/00	8/9/00	8/15/00	.8/8/00	8/14/00	8/23/00	8/4/00	8/23/00	8/16/00	J01100- 8/7/00
,2-Dichlorobenzene	ug/L	16	6.6	8.6	L ND	I ND	2 ND	2 ND	3 ND	-10 ND	3 ND	3 ND	1 ND	20 ND*	3 ND	4 ND	2 ND	. I ND	2 ND	3 ND	2 ND	I ND	20 ND*	1 ND	30 ND*	3 ND	I NE
2-Dichloroethane	ug/L	6	120	130	27	1 ND	3 ND	2 ND	. 3 ND	20 ND*	3 ND	3 ND	2 ND	30 ND*	5 ND	5 ND	3 ND	I ND	4 ND	3 ND	. 3 ND	I ND	30 ND*	l ND	40 ND*	4 ND	1 NC
2-Dichloropropane	ug/L	9.1	12	13	2.3	I ND	2 ND	I ND	2 ND	9 ND	2 ND	2 ND	I ND	20 ND*	3 ND	22	2 ND	I ND	2 ND	5.4	2 ND	ן אס	20 ND*	I ND	20 ND*	21	I NI
cetone	ug/L	1700	2300	2500	370	20 ND	. 30 ND	6000	2600	100 ND	20 ND	590	170	400 ND	60 ND	1100	30 ND	7 ND	450	350	20 ND	6 ND	2000	20 NI)	600 ND	11000	20 N
enzene	ug/L	12	26	28	5.2	ו אח	1 ND	1 ND	3.9	590	48	93	58	290	190	47	3,2	I ND .	I ND	I ND	1 ND	I ND	140	I ND	120	18	1 11
hlorobenzene	ug/L	47	I ND	I ND	- I ND	I ND	1 ND	1 :ND	1 ND	-t ND	I ND	I ND	1 ND	- 16	1 ND	43	I ND	I ND	I ND	I ND	· I ND	I ND	: 19	מא ו	10 ND	I ND	1 NO
thylbenzene	ug/L	18	41	5.4	I ND	I ND	I ND	GN I	2 ND	9 ND	2 ND	3 ND	1 (1)(1)	19	2 ND	3 ND	2. ND	CIN 1	2 ND	3 ND	CIN L	1 ND	. 10 ND	I ND	20 ND*	2 ND	I ND
n,p-Xylene	ug/L	35	11	14	2	.I ND	1 ND	1 ND	1 ND	16	I ND	9	1.9 .	- 41	5.8	1.8	1 ND	I ND	I ND	I ND	. I ND	1 ND	7 ND	1 ND	20 ND	7.5	I NO
Aethylene chloride	ug/L	47	320	330	72	5 ND	62	5 ND	5 ND	140	5 ND	66	44	610	91	300	5 ND	5 ND	5 ND	69	5 ND	5 ND	11000	5 ND	9600	990	5 ND
-Xylene	ug/L	35	7.2	- 8	1.1	1 ND	. I ND	1 ND	I ND	13	I ND	6	1.5	31 :	3.7	6.9	I ND	1 ND	I ND	I ND	I ND	I ND	8 ND	I ND	8 ND	7.9	I NE
tyrene	ug/L	-80	I ND	1 ND	I ND	1 ND	I ND	· I ND	I: ND	4 ND	כוא ו	1 ND	1 ND	6 ND	I ND	I ND	I ND	1 ND	I ND	I ND	I ND	I ND	7 NI)	I ND	7 ND	I ND	I ND
etrachloroethene	ug/L	11	2.3	2,4	1.8	1 ND	2 ND	: 2 ND	3 ND	10 ND	2 ND	2 ND	1 ND	34	3 ND	3 ND	2 ND	I ND	2 ND	2 ND	2 ND .	I ND	110	1 ND	20 ND	3 ND	I ND
'oluene	ug/L	140	130	130	9.1	I ND	I ND	I ND	4.9	380	15	86	29	240	44	1.1	I ND	I ND	I ND	i ND	1 ND	I ND	62	l ND	10 ND	13	1 NE
Frichloroethene	ug/L	29	2 ND	5 MD	1 1	I ND	םא ב	1 ND	2 ND	10 ND	2 ND	2 ND	1 ND	20 ND	3 ND	3 ND	2 ND	I ND	2 ND	2 ND	2 ND	I ND	220	1 ND	180	2 ND	I NE
Vinyl chloride	ug/L	15	46	55	9.9	2 ND	2 ND	2 ND	2 ND	6 ND	5.3	2 ND	2 ND	9 ND	2 ND	2 ND	2 ND	2 ND	2 ND.	2 ND	2 ND	2 ND	10 ND	2 ND	IO ND	2 ND	2 NL
Kylenes, total	ug/L	35	18.2	2.2	3 1	L ND	I ND	I ND	(IN	29	1 ND	15	3.4	72	9.5	11.7	CIN I	1 ND	I ND	I ND	1 ND	I ND	7 ND	IND	8 ND	15.4	I ND
									·						· · · · · · · · · · · · · · · · · · ·												· .
	SAMPLE #	GSI	MW-D	MW-D0	MW-E	MW-G	MW-H	MW-I	MW-J	MW-K	PZ-1	PZ-2	PZ-3	PZ-4	PZ-5	PZ-6	SB-01	SB-02	SB-03	SMW-01	SMW-02	SMW-03	SMW-04	SMW-04-99	1 2000		SMW-05
SEMIVOLATILE ORGA	NICE.	Criteria+	J011012	J011013	J011017	J011007	J030020	J030021	J042003	J030015	J030006	J030011	J030012	J030002	J030008	J030001	J011011	J011009	J011015	J030018	J011010 :	J030010	J053017	J011003	J053016	J042002	J01100
			8/8/00	8/8/00	8/9/00	8/7/00	8/15/00	8/15/00	8/16/00	8/14/00	8/10/00	8/11/00	8/11/00	8/10/00	8/11/00	8/10/00	8/8/00	8/8/00	8/9/00	8/15/00	8/8/00	8/14/00	8/23/00	8/4/00	8/23/00	8/16/00	8/7/00
,2,4,5-Tetrachlorobenzene	ùg/L	2.8	4 ND+	4 ND*	4 ND*	2 ND*	3 ND*	2 ND*	4 ND*	4 ND*	4 ND*	4 ND*	2 ND*	10 ND*	4 ND*	4 ND*	4 ND*	4 ND*	4 ND*	2 ND*	4 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2. ND
,4,6-Trichlorophenol	ug/L	4.4	, 4 ND	.4 ND	-I ND	2 ND	2 ND	8.21	4 ND	7.36	4 ND	4 ND	2 ND	20 ND	4 ND	4 ND	4 ND	4 ND	8.9	2 ND	4 ND	2 ND	4.06	2 ND	4.3	48.1	2 ND
,4-Dichlorophenol	ug/L	19	4 ND	4 ND	4 ND	2 ND	2 ND	2.13	4.69	4 ND	4 ND	1 ND	2 ND	8 ND	1 ND	4 ND	40.7	4 ND	8.72	2 ND	9.24	2 ND	3.98	2 ND	6.61	34,6	2 NE
,4-Dimethylphenol	ug/L	380	18-1	. 243	35.9	2 ND	2 ND	2 ND	11.2	1 MI)	4 ND	6.64	3.68	71.6	4 ND	4 ND	14.2	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	39	2 NE
-Chlorophenol	ug/L	22	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND	4 ND	4 ND	4 ND	4 ND	2 ND	9 ND	4 ND	4 ND	4 ND	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	17.4	2 Nf.
cenaphthene	110/L	1 19	1 ND	-4 ND	4 ND .	2 ND	2 ND	2 ND	4 ND :	4 ND	4 ND	4 ND	2 ND	5 ND	I 4 ND I	4 ND	4 ND	4 ND	4 ND	2 ND	4 ND	2 ND	6.07	2 ND	7.87	5.45	2 N

	SAMPLE #	GSI	MW-D	MW-D0	MW-E	MW-G	MW-H	MW-I	MW-J	MW-K	PZ-1	PZ-2	PZ-3	PZ-4	PZ-5	PZ-6	SB-01	SB-02	SB-03	SMW-01	SMW-02	SMW-03	SMW-04	SMW-04-99		,	1
			J011012	J011013	J011017	J011007	J030020	J030021	J042003	J030015	J030006	J030011	J030012	J030002	J030008	J030001	J011011	J011009	J011015	J030018	J011010 :	J030010	J053017	J011003	J053016	J042002	J01100
SEMIVOLATILE ORGA		Criteria+	8/8/00	8/8/00	8/9/00	8/7/00	8/15/00	8/15/00	8/16/00	8/14/00	8/10/00	8/11/00	8/11/00	8/10/00	8/11/00	8/10/00	8/8/00	8/8/00	8/9/00	8/15/00	8/8/00	8/14/00	8/23/00	8/4/00	8/23/00	8/16/00	8/7/00
1,2,4,5-Tetrachlorobenzene	ùg/L	2.8	4 ND*	4 ND*	4 ND*	2 ND*	2 ND*	2 ND*	4 ND*	4 ND*	4 ND*	4 ND*	2 ND ^e	10 ND*	4 ND*	4 'ND*	4 ND*	4 ND*	4 ND*	2 ND*	4 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2. ND
2,4,6-Trichlorophenol	ug/L	4.4	, 4 ND	4 ND	-I ND	2 ND	2 ND	8.21	4 ND	7.36	4 ND	4 ND	2 ND	20 ND	4 ND	4 ND	4 ND	4 ND	8.9	2 ND	4 ND	2 ND	4.06	2 ND	4.3	48.1	2 ND
2,4-Dichlorophenol	i.g/L	19	4 ND	4 ND	4 ND	2 ND	2 ND	2.13	4.69	4 ND	4 ND	4 ND	2 ND	8 ND	1 ND	4 ND	40,7	4 ND	8.72	2 ND	9.24	· 2 ND	3.98	2 ND	6.61	34.6	2 NC
2,4-Dimethylphenol	ug/L	380	18-1	243	35.9	2 ND	2 ND	2 ND	11.2	1 MI)	4 ND	6.64	3.68	71.6	4 ND	4 ND	14.2	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	39	2 NE
2-Chlorophenol	ug/L	22	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND	4 ND	4 ND	4 ND	4 ND	2 ND	9 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	17.4	2 Nf.				
Acenaphthene	ug/L	19	4 ND	-4 ND	4 ND	2 ND	2 ND	2 ND	4 ND	4 ND	4 ND	4 ND	2 ND	5 ND	4 ND	2 ND	1 ND	2 ND	6.07	2 ND	7.87	5.45	2 NE				
Aniline	ug/L	20	35.9	33.4	7.02	2 ND	2 ND	2 ND	4 ND	4 ND	4 ND	GN F	2 ND	4 ND	4 ND	4 ND	4	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 NE
bis(2-Ethylhexyl)phthalate	· ug/L	32	189	164	4.74	2 ND	2 ND	124	54	1 ND	287	4 ND	2 . ND	113	46.3	7.73	4 ND	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	29.2	2 NL
Carbazole	ug/L	10	27.7	31.1	5.04	2 ND	2 ND	2 ND	5.43	I ND	4 ND	4 ND	2 ND	24.8	4 ND	4.87	4 ND	4 ND	4 ND	2 ⁻ ND	4 ND	2 ND	5.68	2 ND	9.55	39.1	2 NT
Dibenzofuran	ug/L	4	14.5	22.7	4 ND	2 ND	2 ND	2 ND.	4 ND	4 ND	4 ND	4 ND	2 ND	23.1	4 ND	2 ND	4 ND	2. ND	4.32	2 ND	6.1	24.1	2 NF.				
Fluoranthene	ug/L	1.6	39.1	59.3	8.67	2 ND*	2 ND*	7	4.96	4 ND*	4 ND*	4 ND*	2 ND*	47.9	7.23	4.5	1 ND*	4 ND*	4 ND*	2. ND*	4 ND*	2 ND*	3.61	2 ND*	5.11	41.6	2 ND
Fluorene	ug/L	12	15.8	22	4 ND	2 ND	2 ND	2.09	4.27	4 ND	4 ND	4 ND	2 ND	23.3	4 ND	4 ND	4 ND	4 ND.	4 ND	2 ND	4 ND	2 ND	4.14	2 ND	6.72	33.1	2 NC
Hexachlorobutadiene	ug/L	0.053	4 ND*	4 ND*	4 ND*	2 ND*	3 ND*	2 ND*	4 ND*	4 ND*	4 ND*	4 ND*	2 ND*	10 ND*	5 ND*	4 ND*	4 ND*	4 ND*	4 ND*	2 ND*	4 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2 ND
m,p-Cresol	ug/L	71	777	854	158	6 ND	6 ND	6 ND	584	87.9	10 ND	28:3	6 ND	434	10 ND	67.3	10 ND	10 ND	10 ND	6 ND	10 ND	6 ND	38.5	6 ND	66.1	339	6 ND
Naphthalene	ug/L	13	194	223	25	2 ND	2 ND	2 ND	89	4 ND	4 ND	57.7	16.9	286	5.48	48.4	4 ND	4 ND.	4 ND	2 ND	4 ND	2 ND	43.9	2 ND	61.3	224	2 N
o-Cresol	ug/L	71	233	267	49.2	2 ND	2 ND	2 ND	35.1	5.8	4 ND	8.26	6.33	122	1 ND	14.1 ;	8.8	4 ND	4 ND	2 ND	4 ND	2 ND	6.79	2 ND	15.7	78.6	2 ND
Pentachlorophenol	ug/L	1.8	147	129	35.1	4 ND*	4 ND*	7.75	8 ND*	19.5	8 ND*	71.3	16.1	381	8 ND*	82.3	8 ND*	8 ND*	8.4	-4 ND*	8 ND*	4 ND*	34.8	4 ND*	52.3	60.6	4 ND
Phenanthrene	ug/L	5	60.3	93.1	11.8	2 ND	2 ND	5.67	13.2	4.13	4 ND	4 ND	2.47	70.8	7.27	8.73	4 ND	4 ND	4 ND	2 ND	4 ND	2 ND	9.26	2 ND	14	87.4	2 NO
Phenol	ug/L	210	731	770	147	2 ND	2 ND	2 ND	69.4	166	4 ND	55.1	11.6	347	I ND	54.5	4 ND	4 ND	111	2 ND	4 ND	2 ND	25.8	2 ND	37.5	267	2 ND

	[EA]	ADI P.4	GSI	MW-D	MW-D0	MW-E		MW-G	MW-H	MW-I	MW-J	MW-K	PZ-1	PZ-2	PZ-3	PZ-4	PZ-5	. PZ-6	SB-01	SB-02	SB-03	SMW-01	SMW-02	SMW-03	SMW-04	SMW-04-99	SMW-040	SMW-05	SMW-05-99
PCP.	SAI	MPLE#		J011012	J011013	J01101	7 3	011007	J030020	J030021	J042003	J030015	J030006	J030011	J030012	J030002	J030008	J030001	J011011	J011009	J011015	J030018	J011010	J030010	J053017	J011003	J053016	J042002	J011004
PCBs			Criteria	8/8/00	8/8/00	8/9/00		8/7/00	8/15/00	8/15/00	8/16/00	8/14/00	8/10/00	8/11/00	8/11/00	8/10/00	8/11/00	8/10/00	8/8/00	8/8/00	8/9/00	8/15/00	8/8/00	8/14/00	8/23/00	8/4/00	8/23/00	8/16/00	8/7/00
Arochlor-1242		.ug/L		0.2 ND	0.2 ND	0.2 N	D 0.	2 ND	0.2 ND	0.2 ND	0.2 ND	: 0.2 ND	0:2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1248		ug/L		0.2 ND	0.2 ND	0.2 N	D 0.	2 ND	0.2 ND	0.646	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	. 0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0:2 ND	0.2 ND	0.2 ND	0.2 ND	2.58	0.2 ND
Arochlor-1254		ug/L		6.04	4:51	0.2 N	D 0.	.2 ND	0.2 ND	0.2 ND	.0.2 ND	0.2 ND	0.2 ND	0,2 ND	0.2 ND.	6.55	. 0.391.	0.2 ND	0,2 ND	0.2 ND	0.2 ND								
Arochlor-1260		· ug/L		0.2 ND	0.2 ND	0.2 N	D 0.	.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0:2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Total	tal PCBs	ug/L	0.2	6.04	4.51	ND		ND	ND	0.646	ND	ND	ND	ND	ND	6.55	0.391	ND	ND	2.58	ND								

	SAMPLE#	GSI	MW-D	MW-D0	MW-E	MW-G	MW-H	MW-I	MW-J	MW-K	PZ-1	PZ-2	PZ-3	PZ-4	PZ-5	PZ-6	SB-01	SB-02	SB-03	SMW-01	SMW-02	SMW-03	SMW-04	SMW-04-99	SMW-040	SMW-05	SMW-05-99
1 [200	SAMPLE #	Criteria+	J011012	J011013	J011017	J011007	J030020	J030021	J042003	J030015	J030006	J030011	J030012	J030002	J030003	J030001	J011011	J011009	J011015	J030018	J011010	J030010	J053017	J011003	J053016	J042002	J011004
METALS		Criteria	8/8/00	8/8/00	8/9/00	8/7/00	8/15/00	8/15/00	8/16/00	8/14/00	8/10/00	8/11/00	8/11/00	8/10/00	8/10/00	8/10/00	8/8/00	8/8/00	8/9/00	8/15/00	8/8/00	8/14/00	8/23/00	8/4/00	8/23/00	8/16/00	8/7/00
Arsenic	mg/L	0.05	14.3	13.7	2.22	-0:004 ND	0.168	0.869	0.127	0.201	0.122	0.159	0.035	0.262	0.308	0.065	0.622	0.011	0.216	0.055	0.201	0.004 ND	0.095	0:004 ND	0.101	0.526	0.004 ND
Barium	mg/L	0.48	0.021	0.019	0.021	0.05	0.167	0.039	0.258	0.167	0.396	0:062	0:021	0.038	0.368	0.024	0.375	0.075	0.096	0.135	0.281	0.07	0.107	0.032	0.1	0:019	0.053
Cadmium	mg/L	0.0025	0.002 ND	0.002 ND	0.0014	0.0005 NI	0.001 ND	0.0009	0.002 ND	0.002 ND	0.0005 ND	0.0005 NI	0.0005 ND	0.0025 ND	0.0005 ND	0.0005 ND	0.002 ND	0:0005 ND	0.002	0.0005 ND	0.001 ND	0:0005 ND	0.001 ND	0.0022	0.0005 ND	0.0005 ND	0.0005 ND
Chromium	mg/l_	0.08	0.129	0.123	0.068	0.011	0.286	0.046	0.286	0.663	0.164	0.092	0.017	0.142	0.428	0.05	0.463	0.017	3.43	0:071	0.566	0.004 ND	0.071	0:004 ND	0:072	0.079	0.006
Copper	mg/L	0.097	0.013	0.012	0.079	0.011	0.029	0.044	0.029	0:019	0.013	0.006	0.022	0.015	0:06	0.032	0.032	0.023	0.298	0:018	0.032	0.008	0.008	0.009	0.006	0.018	0.008
Lead	mg/L	0.011	0.011	0.011	0.798	0.004	0:004 ND	0.012	0.069	0.008 ND	0.006	0.005	0.022	0.039	0.005	0.113	0.01	0.021	0.054	0.006	0.012	0.004 ND	0.006	0.004	0:005	0.016	0.002 ND
Mercury	mg/L	0.0000013	0.919	0.716	0.341	0.0003	0.0012	8000.0	0.113	0.0387	0.0016	0.0147	0.0034	0.372	0.0033	0.0181	0.0008	0.0003	0.0296	0.0003	0,0009	0.0002 ND*	0.0009	0.0002 ND*	0.0006	0.0189	0.0002 ND*
Selenium	mg/L	0.005	0.01	0.009	0.004	0.004 ND	0.022	0.004 ND	0:008 ND*	0.018	0.009	0.004	0.004 ND	0.01	0.03	0.004 ND	0.019	0.004 ND	0.034	0.004 ND	0:011	0.004 ND	0.004 ND	0:008 ND*	0.004 ND	0.004	0.004 ND
Zinc	mg/L	0.13	O.02 .ND	0:02: ND	0.224	0.035	0.027	0.051	0.045	0.041	0.027	0.014	0.01 ND	0.033	0.062	0.065	0.125	0.022	0.145	0.02	0.042	0.014	0.03	0.099	0.028	0.049	0.01 ND

	CANDIE 4	GSI	MW-D	MW-D0	MW-E	MW-G	MW-H	MW-I	MW-J	MW-K	PZ-1	PZ-2	PZ-3	PZ-4	PZ-5	PZ-6	SB-01	SB-02	SB-03	SMW-01	SMW-02	SMW-03	SMW-04	SMW-04-99	SMW-040	SMW-05	SMW-05-99
INONCANICO	SAMPLE #	Criteria+	J011012	J011013	J011017	J011007	J030020	J030021	J042003	J030015	: J030006	J030011	J030012	J030002	J030008	J030001	J011011	J011009	J011015	J030018	J011010	J030010	J053017	J011003	J053016	J042002	J011004
INORGANICS		Citteria	8/8/00	8/8/00	8/9/00	8/7/00	8/15/00	8/15/00	8/16/00	8/14/00	8/10/00	8/11/00	8/11/00	8/10/00	8/11/00	8/10/00	8/8/00	8/8/00	8/9/00	8/15/00	8/8/00	8/14/00	8/23/00	8/4/00	8/23/00	8/16/00	8/7/00
Chloride	mg/L	50	613	622	235	466	1420	539	528	1340	3590	1050	316	1420	3260	742	590	331	1580	206	664	80.5	561	138	590	564	127
Cyanide, Total	mg/L	0.02	9.56	9.47	1.49	0.185	2.81	0.51	2.78	24.8	2.1	1.33	0.53	2.42	10.3	1.18	4.75	0.098	2.48	0.45	0.79	0.035	0.936	0.006	0.943	2.07	0.131
Nitrogen, Ammonia	mg/L	0.029	28.6	28.8	6.95	5.06	9.18	5.61	32	58.2	4.55	10.9	1.69	15.8	13.6	2,71	42.1	8.12	46.1	1.94	24.4	0.58	10.8	3.98	10.5	7.34	0.31

Bold results indicate GSI Criterion exceedance.

N/A - Not analyzed

^{*} Indicates laboratory non-detect with MDL greater than GSI criterion.

⁺ Source - Operational Memorandum No. 18 or MDEQ Background Value.

ND - Non-Detect (Not reported above increatory detection limits).

[· · · · · · [SAMPLE#	GSI ⁻		SMW-06-99	SMW-07	SMW-08	SMW-09	SMW-10	SMW-11	SMW-12	SMW-13	•	SMW-15	SMW-16	SMW-17	SMW-18	SMW-19	SMW-190	SMW-20	SMW-21	SMW-22	•		SMW-24	SMW-25	SMW-26	SMW-260	SMW-27
VOLATILE ORGANICS		Criteria+	J042007	J011005	J011002	J011001	J042009	J042006	J053004	J042021	J053018	J042019	J042020	J053009	J053008	J042013	J042014	J042015	J042016	J042017	J042018	J053005	J053006	J053014	J053015	J053011	J053012	J053013
	<u>"</u>	Cilicia	8/17/00	8/7/00	8/4/00	8/4/00	8/18/00	8/17/00	8/22/00	8/21/00	8/23/00	8/21/00	8/21/00	8/22/00	8/22/00	8/21/00	8/21/00	8/21/00	8/21/00	8/21/00	8/21/00	8/22/00	8/22/00	8/23/00	8/23/00	8/23/00	8/23/00	8/23/00
1,2-Dichlorobenzene	ug/L	16	3 ND	2 ND	1 NĐ	1 ND	4 ND	28	2 ND	2 ND	20 ND*	I ND	I ND	1 ND	טא ו	I ND	1 ND	I ND	30 ND*	I ND	3_ND	1 ND	I ND	1.7	I ND	I ND	J ND	5.1
1,2-Dichloroethane	ug/L	6	25	3 ND	I ND	I ND	5 ND	35	3 ND	' 3 ND	40 ND*	: 6	- I ND	1- ND	I ND	1 ND	l ND	I ND	320	l ND	4 ND	I ND	1 ND	13	2 ND	27	36	55
1,2-Dichloropropane	ug/L	9.1	14	2 ND	I ND	I ŃD	10	34	2 ND	2 ND	30 NI)*	16	. I ND	I ND	I ND	I ND	I ND	1 ND	20 ND*	IND	5.5	I ND	I ND	2.2	I ND	17	22	11
Acetone	ug/L	1700	2200	20 ND	20 ND	87	660	2300	890	940	300 ND	160	OND:	10 ND	9 ND	5 ND	5 ND	8 ND	200 NID	6 ND	4000	10 ND	20 ND	20 ND	20 ND	220	2000 ND*	* 1300
Benzene	ug/L	12	3.8	1 ND	I ND	1.2	140	53	2.8	. I ND	7 ND	17	1 ND	J ND	1.3	-I ND	I ND	I ND	2500	I ND	3.3	1 ND	I ND	23	34	. 20	27	38
Chlorobenzene	ug/L	47	1 ND	. I ND	L ND	J ND	1 ND	I ND	I ND	I ND	8 ND .	I NID	1 ND	-I ND	1 ND	-1 ND	CIN I	I ND	430	1 ND	I ND	I ND	1 ND	I ND	I ND	I ND	1 ND	I ND
Ethylbenzene	ug/L	18	2 ND	2 ND	1 ND	-I ND	2 ND	2 ND	- 1 ND	2 ND	20 ND*	CIN 1	· I NID	1 ND	1.1	I ND.	· 1 ND	1 ND	190	1 ND	2 ND	I ND	1 ND	2	6.1	7.4	33	3 ND
m,p-Xylene	ug/L	35	I ND	1 ND	1 ND	J ND	5.9	21.	J ND .	I ND	9 ND	2.4	1 ND	I ND	2.5	1 ND	I ND	CIN I	500	I ND	1 ND	I ND	I ND	2	11	17	32	13
Methylene chloride	ug/L	47	62	5 ND	5 ND	5 ND	5 ND	350	45	52	20 ND	14	5 ND	5 ND	11	5 ND	5 ND	5 ND	1800	5 NO	i ND	32	29	5 ND	5 ND	130	140	460
o-Xylene	ug/L	35	. I ND	I ND	I ND	ו אח	8	11	CIN I	I ND	10 -ND	1.2	I ND	I ND	1.5	I ND	I ND	1 ND	300	I NĐ	1 ND	I ND	I ND	1.8	7.8	11	27	18
Styrene	ug/L	80	I ND	(IN)	I ND	1 ND	I. ND	5:8	I ND	1 ND	8 ND	I ND	I ND	LIND	I ND	J ND	I ND	T ND	250	I ND	1 ND	1 ND	I ND	I ND	I ND	2.1	I ND	1 ND
Tetrachloroethene	ug/L	11	3 ND	2 ND	I ND	I ND	3 ND	6.5	2 ND	2 ND	20. ND	I ND	I ND	I ND	I ND	1 ND	I ND	I ND	20 ND	UN I	2 ND	I ND	I ND	I ND	I ND	1.8	I ND	2 ND
Toluene	ug/L	140	3.2	I ND	1 ND	1 ND	56	110	3.3	I ND	18	5.3	I ND	I ND	12	I ND	1 ND	I ND	1500	1 ND	4.7	1 ND	I ND	4.1	-81:	31	46	58
Trichloroethene	ug/L	29 .	. J. 1910	2 ND-	I ND	1 ND	6.7	2 ND	2 ND	2 ND	20 ND	I ND	I ND	สหา เ	I ND	I ND	I ND	I ND	20 ND	l ND	2 ND	I ND	65					
Vinyl chloride	ug/L	15	5.2	2 ND	2 ND.	2 ND	2.8	66	ND	2 ND	10 ND	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	. 2 ND	10 ND	2 ND	2 ND	2 ND	2 ND	. 2 ND	3.8	6.1	9.6	17
Xylenes, total	ug/L	35	1 800	- I NI)	I ND	I ND	3	21	1 ND	1 ND	GN 6	3.6	1. ND	I ND	-1	מא ו	1 ND	I ND	800	I ND	. 1 ND	I ND	I ND	3.8	18.8	28	59	31

S	AMPLE#	GSI	SMW-06	SMW-06-99	SMW-07	SMW-08	SMW-09	SMW-10	SMW-11	SMW-12	SMW-13	SMW-14	SMW-15	SMW-16	SMW-17	SMW-18	SMW-19	SMW-190	SMW-20	SMW-21	SMW-22	SMW-23	SMW-230	SMW-24	SMW-25	SMW-26	SMW-260	SMW-27
			J042007	J011005	J011002	J011006	J042009	J042006	J053004	J042021	J053018	J042019	J042020	J053009	1053008	J042013	J042014	J042015	J042016	J042017	J042018	J053005	J053006	J053014	J053015	J053011	J053012	J053013
SEMIVOLATILE ORGANIC	CS	Criteria+	8/17/00	8/7/00	8/4/00	8/7/00	8/18/00	8/17/00	8/22/00	8/21/00	8/23/00	8/21/00	8/21/00	8/22/00	8/22/00	8/21/00	8/21/00	8/21/00	8/21/00	8/21/00	8/21/00	8/22/00	8/22/00	8/23/00	8/23/00	8/23/00	8/23/00	8/23/00
1,2,4,5-Tetrachlorobenzene	ug/L	2.8	, 1 ND.	2 ND*	2 ND*	2 ND*	2 ND*	4 ND*	2 ND*	4 ND*	4 ND*	3	2 ND*	6 ND*	4 ND*	4 ND*	2 ND*											
2,4,6-Trichlorophenol	ug/L	4.4	4.16	2 ND	2 ND	2 ND	27.2	4 19	6.53	6.38	7.64	3 ND	2 ND	14.7	4 ND	-I ND	2 ND	2 ND	2 ND	9.83	3.89	2.97	2.52					
2,4-Dichlorophenol	ug/L	19	4 ND	2 ND	2 ND	2 ND:	7.51	4 ND	2 ND	4 ND	5.96	2 ND	2.79	. 2 ND	2 ND	2 ND	2 ND	2 ND	49.2	4 ND	4 ND	2 ND	2 ND	2 ND	8.54	5.61	6.11	4.24
2,4-Dimethylphenol	ug/L	380	203	2 ND	2 ND	2 ND	2 ND	181	42.6	4 ND	4 ND	2 ND	580	4 ND	4 ND	2 ND	3.19	832										
2-Chlorophenol	ug/L	22	4 ND	2 ND	2 ND	2 ND	2 ND	· 4 ND	2 ND:	4 ND	4 ND	4 ND	2 ND	43.7	4 ND	4 ND	2 ND											
Acenaphthene	ug/L	19	4.71	2 ND	2 ND	2 ND	2 ND	11.1-	2 ND	4 ND .	4.15	2 ND	110	4 ND	-1 ND	2 ND	2 ND	2 ND	2 ND	2.16	2.41	2 ND						
Aniline	ug/L	20	4 ND	2 ND	2 ND	2 ND	2 ND .	24.8	2 ND	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	. 2 ND	2 ND	2 ND	4 ND	4 ND	4 ND	2 ND	4.31					
bis(2-Ethylhexyl)phthalate	ug/L	32	355	2 ND	2 ND	2 ND	2 ND	266	2 ND	162	16.6	11.4	280	2 ND	2 ND	5.1.	2 ND	2 ND	2510	1 ND	326	2 ND	5.62					
Carbazole	ug/L	10	26.9	2 ND	2 ND	2 ND	2 ND	87.1	2 ND	6.38	29.4	2 ND	2 ND .	2 ND	1110	4 ND	1 ND	2 ND	2 ND	2 ND	2 ND	10.3	11.6	19.7				
Dibenzofuran	ug/L	4	.13	2 ND	2 ND	2 ND	2 ND	58	2 ND	4 ND	28.4	4.32	2 ND	1080	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	7.33	7.3	10.3					
Fluoranthene	ug/L	1.6	61.9	2 ND*	2 ND*	2 ND*	2 ND*	96	6.63	4 ND*	35.6	17.1	2 ND*	3390	4 ND*	4 ND*	2 ND*	2 ND*	2 ND*	2 ND*	2.87	3,22	9.6					
Fluorene	ug/L	12	20.7	2 ND	2 ND	2 ND	2 ND	60.5	2 ND	4 ND	32.7	5.06	2. ND .	2 ND	1250	4 ND	1 ND	2 ND	2 ND	2 ND	2 ND	8.19	8.44	11.6				
Hexachlorobutadiene	ug/L	0.053	4 ND*	2 ND*	2 ND*	2 ND*	2 ND*	4 ND*	2 ND*	4 NÜ•	4 ND*	3 ND*	2 ND*	6 ND*	4 .ND*	4 ND*	2 ND*											
m,p-Cresol	ug/L	71	658	6 ND	6 ND	6 ND	22.5	699	119	46.7	131	6 ND	3900	10 ND	46.2	6 ND	6 ND	6 ND	6 ND	26.9 -	62.5	428						
Naphthalene	ug/L	13	98.8	2 ND	2 ND	2 ND	9.81	911	3.25	4 ND	490	29.9	2 ND	2 ND	2.42	2 ND	2 ND	2 ND	5340	4 ND	8.14	2 ND	2 ND	5.39	13.3	208	247	236
o-Cresol	ug/L	71	192	2 ND	2 ND	2 ND	2 ND	197	25.6	4 ND	17.4	3 ND	2 ND	2 ND	2. ND	2 ND	2 ND	2 ND	1210	4 ND	4 ND	2 ND	6.99	85.2				
Pentachiorophenol	ug/L	1.8	104	4 ND*	4 ND*	4 ND*	.4 ND*	8 ND*	41.9	79.7	61.5	5 ND	1 ND*	4 ND*	4 ND*	4 ND*	I ND*	4 ND*	254	8 ND*	. 8 ND*	4 ND*	4 ND*	4 ND*	4 ND*	55.9	69.6	. 32
Phenanthrene	ug/L	5	75.9	2 ND	2 ND	2 ND	2 ND	211	6.32	4 ND	75.5	19.3	2 ND	4820	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	11.7	12.9	19.8					
Phenol	ug/L	210	595	2 ND	2 ND	2 ND	14.5	820	317	189	166	6.25	2 ND	2 ND	2 ND	194	2 ND	2 ND	2310	4 ND	39.1	2 ND	2 ND	2 ND	2 ND	28.4	39.4	328

	SAMPLE#	GSI	SMW-06	SMW-06-99		ì	SMW-09	SMW-10			SMW-13		-	SMW-16	SMW-17	SMW-18								SMW-24			SMW-260	SMW-27
PCBs	[Giller ED II]	Criterla+	J042007 8/17/00	J011005	J011002	J011001	J042009	J042006	J053004	J042021	J053018	J042019		J053009	J053008	J042013	J042014		, ,	J042017		J053005	r	J053014	J053015		J053012	J053013
ļ . 1			8/1//00	8/7/00	8/4/00	8/4/00	8/18/00	8/17/00	8/22/00	8/21/00	8/23/00	8/21/00		8/22/00	8/22/00	8/21/00	8/21/00	8/21/00	8/21/00	8/21/00	8/21/00	8/22/00	8/22/00	8/23/00	8/23/00	8/23/00	8/23/00	8/23/00
Arochlor-1242	ug/L		0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	N/A	0.2 ND														
Arochlor-1248	ug/L		0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND		0.2 ND														
Arochlor-1254	ug/L		- 11	0.2 ND	0.2 ND	0.2 ND	0.2 ND	53.5	0.2 ND	0.2 ND	0.2 ND	0.2 ND		0.2 ND	0.2 ND	0.2 ND.	0.2 ND	0.2 ND	59.4	0.2 ND								
Arochior-1260	ug/L		0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	-0.2 ND	0.2 ND		0.2 ND														
Total P	CBs ug/L	0.2	11	ND	ND	ND	ND	53.5	ND	ND	ND	ND		ND	ND	ND	ND	ND	59.4	ND								

_																												
	SAMPLE #	GSI	SMW-06	SMW-06-99	SMW-07	SMW-08	SMW-09	SMW-10	SMW-11	SMW-12	SMW-13	SMW-14	SMW-15	-SMW-16	SMW-17	SMW-18	SMW-19	SMW-190	SMW-20	SMW-21	SMW-22	SMW-23	SMW-230	SMW-24	SMW-25	SMW-26	SMW-260	SMW-27
METALO	SAMIF LE #	Criteria+	J042007	J011005	J011002	J011001	J042009	J042006	J053004	J042021	J053018	J042019	J042020	J053009	J053008	J042013	J042014	J042015	J042016	J042017	J042018	J053005	J053006	J053014	J053015	J053011	J053012	J053013
METALS		Cilicita	8/17/00	8/7/00	8/4/00	8/4/00	8/18/00	8/17/00	8/22/00	8/21/00	8/23/00	8/21/00	8/21/00	8/22/00	8/22/00	8/21/00	8/21/00	8/21/00	8/21/00	8/21/00	8/21/00	8/22/00	8/22/00	8/23/00	8/23/00	8/23/00	8/23/00	8/23/00
Arsenic	mg/L	0.05	15.3	0.106	0.004 ND	0.004 ND	0.053	11.4	6.61	0.753	0.341	0.019	0.044	0.004 ND	0.005	0.008	0.005	0.004 ND	0.734	0.006	0.301	0.089	. 0.1	0.063	0.023	0.186	0.189	20.2
Barium	mg/L	0.48	0.016	0.121	0.071	0.054	0.028	0.153	0.228	0.132	0.065	0.096	0.068	0.044	1.05	0:07	0.485	0.47	0.033	0:049	0.428	0.087	0.091	0.022	0.011	0.014	0.015	0.034
Cadmium	mg/L	0.0025	0.002 ND	0,0005 ND	0.001 ND	0.0005 NI	0.0005 NE	0.002	0.001 ND	:0.002 ND	0.001 ND	0.001 ND	0:0005 NE	0.0005 NE	0.0005 NI	0.0005 NE	0.0005 NI	0.0005 NI	0.001 ND	0.0005 NI	0.001 ND	0.0005 N	D0.0005 ND	0:0005 NI	0:0005 NE	0.0032	0.0035	0.0054
Chromium	mg/L	0.08	0.178	0.044	0.004 ND	0.004 ND	0.026	0.299	0.97	0.586	0.202	0.009	0.006	0.033	0.004 ND	0.004 ND	0.004 ND	0.004 ND	0.496	0.004 ND	0.89	0.04	0.03	0.024	0.019	0.021	0:021	0.254
Copper	mg/L	0.097	0.013	0.017	0.01	0:008	0.018	0.021	0.039	0.087	0.048	0.004	0.06	0.004 ND	0,004 ND	0.004 ND	0:004 ND	0.004 ND	0.028	0.013	0.048	0:019	0.013	0.004 NI	0.004	0.036	0.038	0.039
Lead	mg/L	0.01,1	0.01	0.003	0.003	0.002 ND	0.042	0.077	0,014	0.105	0.054	0.004 ND	0.002	0.002 ND	0.007	0.005	0.006	0,003	0.035	0.004	0.097	0.004	0.002	0:002 NE	0.005	0.142	0.158	0.121
Мегсшту	mg/L	0.0000013	0.423	0.0005	0.0002 ND*	0.0002 ND	0.0174	0.291	0.037	0.0269	0.259	0.001	0.0003	0.0002 ND	0.0002 ND	0.0002 ND	0:0002 ND	0.0002 ND	1.71	0.0008	0.0269	0.0002 ND	0.0002 ND	0.0009	0.0008	0.0235		0.739
Selenium	mg/L	0.005	0.013	0.005	0.004 ND	0.004 ND	0.004 ND	0.015	0.029	0.037	0.011	0.004 ND	0.006	0:004 ND	-0.004 ND	0.004 ND	0:004 ND	0.004 ND	0.022	0.004 ND				0:004 NE				0.011
Zinc	mg/L	0.13	- 0,028	0.018	0.031	0.033	0.022	0.062	0.097	0:057	0.096	0.01 ND	0.021	0.01 ND	0.01 ND	0.01 ND	0.012	0.01 ND	0.094	0:01 ND	0.101	0.029	0.01 ND	OOL ND	0.015	0.144	0.16	0.299

INORGANICS	SAMPLE #	GSI Criteria+	SMW-06 J042007 8/17/00	SMW-06-99 J011005 8/7/00	SMW-07 J011002 8/4/00	SMW-08 J011006 8/7/00	SMW-09 J042009 8/18/00	SMW-10 J042006 8/17/00	SMW-11 J053004 8/22/00	SMW-12 J042021 8/21/00	SMW-13 J053018 8/23/00	SMW-14 J042019 8/21/00
Chloride	mg/L	50	808	1710	121	74	434	1010	1030	1250	531	81.1
Cyanide, Total	mg/L	0.02	9.72	0.582	0.006	0.005 ND	0.9	15.1	12.4	16	2.72	0,062
Nitrogen, Ammonia	mg/L	0.029	33.8	17.6	0.76	1.52	2.37	37.5	50	37.8	39.7	0.89

/A	SMW-16 J053009 8/22/00	SMW-17 J053008 8/22/00	SMW-18 J042013 8/21/00	SMW-19 J042014 8/21/00	SMW-190 J042015 8/21/00	SMW-20 J042016 8/21/00	SMW-21 J042017 8/21/00	SMW-22 J042018 8/21/00	J053005 8/22/00	SMW-230 J053006 8/22/00	SMW-24 J053014 8/23/00	SMW-25 J053015 8/23/00	SMW-26 J053011 8/23/00	SMW-260 J053012 8/23/00	SMW-27 J053013 8/23/00
	72.6	11.2	298	63.4	61.4	1410	109	1500	222	202	218	233	261	247	335
	0.005 ND	0.48	0.006	0.009	0.027	3.36	0.013	6.44	0.087	0.09	0.686	0.337	0.451	0.436	1.91
	0.38	6.05	9,47	3.94	3.96	23.4	0.48	78.2	8.29	8.31	4.23	1.53	4.67	4.63	17.6

Bold results indicate GSI Criterion exceedance:

N/A - Not analyzed

• Indicates laboratory non-detect with MDL greater than GSI criterion.

+ Source - Operational Memorandum No. 18 or MDEQ Background Value.

ND - Non-Detect (Not reported above laoratory detection limits).

Table 12
BASF Riverview, Michigan
Groundwater Samples
Relative Potency of Dioxins

Printed: 1-24-01 Source: Pace Laboratory

				SMW-5			SMW-6			SMW-13	
	,		4								
	TEF	TEF	Conc.	Toxic	Toxic	Conc.	Toxic	Toxic	Conc.	Toxic	Toxic
Congener	1997	1989	(ng/L)	Equiv. ('97)	Equiv. ('89)		Equiv. ('97)		(ng/L)	Equiv. ('97)	Equiv. ('89)
301.301.01	1001		1 19/-/		=92.0. (33)	\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			13, =/		<u> </u>
2378-TCDD	1	1	0.0078	0.008	0.008	0.007	0.007	0.007	0	0.000	0.000
12378-PeCDD	1	0.5	0	0.000	0.000	0.024	0.024	0.012	0	0.000	0.000
123678-HxCDD	0.1	0.1	0.045	0.005	. 0.005	0.091	0.009	0.009	0.011	0.001	0.001
123789-HxCDD	0.1	0.1	0.012	0.001	0.001	0.046	0.005	0.005	0.006	0.001	0.001
123478-HxCDD	0.1	0.1	0.0064	0.001	0.001	0.026	0.003	0.003	0	0.000	0.000
1234678HpCDD	0.01	0.01	0.4	0.004	0.004	. 1.7	0.017	0.017	0.24	0.002	0.002
OCDD	0.0001	0.001	2.1	0.000	0.002	11	0.001	0.011	1.2	0.000	0.001
ĺ	•		1								Ĭ
2378-TCDF	0.1	0.1	0.036	0.004	0.004	0.14	0.014	0.014	0.011	0.001	0.001
12378-PeCDF	0.05	0.05	0.012	0.001	0.001	0.11	0.006	0.006	0.0024	0.000	0.000
23478-PeCDF	0.5	0.5	0.013	0.007	0.007	0.087	0.044	0.044	0.0035	0.002	0.002
123678HxCDF	0.1	0.1	0.0047	0.000	0.000	0.033	0.003	0.003	0.0048	0.000	0.000
123789-HxCDF	0.1	0.1	0	0.000	0.000	0.037	0.004	0.004	0	0.000	0.000
123478-HxCDF	0.1	0.1	0.0073	0.001	0.001	0.16	0.016	0.016	0.0052	0.001	0.001
234678-HxCDF	0.1	0.1	0	0.000	0.000	0.021	0.002	0.002	0	0.000	0.000
1234678-HpCDF	0.01	0.01	0.015	0.000	0.000	0.13	0.001	0.001	0.021	0.000	0.000
1234789-HpCDF	0.01	0.01	0	0.000	0.000	0	0.000	0.000	0	0.000	0.000
OCDF	0.0001	0.001	0.079	0.000	0.000	0.22	0.000	0.000	0.14	0.000	0.000
Sum Toxic Equiv.				0.030	0.032		0.155	0.153		0.008	0.010
(in ng/L)											

Notes: TEF 1997 = Toxic Equivalency Factor published by the World Health Organization in 1997
TEF 1989 = Toxic Equivalency Factor published by EPA in 1989
Bold numbers indicate sum of TEFs exceed residential DCC of 90 ng/Kg.

The state of the s

Table 12BASF Riverview, Michigan Groundwater Samples
Relative Potency of Dioxins
Printed: 1-24-01

Source: Pace Laboratory

				SMW-20			SMW-10	
i			-			•		
	TEF	TEF	Conc.	Toxic	Toxic	Conc.	Toxic	Toxic
Congener	1997	1989	(ng/L)	Equiv. ('97)	Equiv. ('89)		Equiv. ('97)	Equiv. ('89)
2378-TCDD	1	1	0	0.000	0.000	0.072	0.072	0.072
12378-PeCDD	1	0.5	Ĭŏ	0.000	0.000		0.190	0.095
123678-HxCDD	0.1	0.1	1.7	0.170	0.170	1.4	0.140	0.140
123789-HxCDD	0.1	0.1	0.85	0.085	0.085		0.052	0.052
123478-HxCDD	0.1	0.1	0.56	0.056	0.056		0.016	0.016
1234678HpCDD	0.01	0.01	29	0.290	0.290		0.210	0.210
OCDD	0.0001	0.001	150	0.015	0.150		0.008	0.084
2072 7005		0.4		0.470	0.470	0.00		0.000
2378-TCDF	0.1	0.1	1.7	0.170	0.170		0.033	0.033
12378-PeCDF	0.05	0.05	1.3	0.065	0.065		0.010	0.010
23478-PeCDF	0.5	0.5	1.1	0.550	0.550		0.105	0.105
123678HxCDF	0.1	0.1	0.64	0.064	0.064		0.010	0.010
123789-HxCDF	0.1	0.1	0	0.000	0.000		0.007	0.007
123478-HxCDF	0.1	0.1	2.8	0.280	0.280		0.034	0.034
234678-HxCDF	0.1	0.1	0	0.000	0.000		0.011	0.011
1234678-HpCDF	0.01	0.01	3.8	0.038 0.000	0.038	0.45 0	0.005	0.005
1234789-HpCDF	0.01	0.01	0		0.000	•	0.000	0.000
OCDF	0.0001	0.001	2.4	0.000	0.002	0.36	0.000	0.000
Sum Toxic Equiv.				1.783	1.920		0.903	0.884
(in ng/L)					.,		·	

Table 13 Field Hydraulle Conductivity Estimates - August and November 2000 BASF Property, Riverview Michigan

	TEST	DATE	TEST	ESTIMAT	ED K (FT/MIN)	T	T
WELL#	FII	RH	UNIT	Fil	RH	GWEL-SCREEN	SCREENED IN
SMW1	08/24/00	08/24/00	w	NV	1.43 E-3	IN	SANDY FILL
IMWI	08/22/00	08/22/00	w	6.244 E-5	5.288 E-5	ABOVE	SILTY-CLAY, CLAY
SMW4	NP	08/28/00	U	NV	1.395 E-3	IN	SILTY FILL, SAND, SILTY CLAY
SMW4-99	08/22/00	08/22/00	P	5.028 E-4	4.099 E-4	ABOVE / CLOSE	SILTY-SANDY-FILL, CLAY
SMW5	08/22/00	08/22/00	W	NV	9.383 E-3	IN	FILL, SANDS, SOFT CLAY
SMW5-99	08/22/00	08/22/00	W	4.182 E-4	6.115 E-4	ABOVE	FILL, SILTY CLAY, STIFF CLAY
IMW5	08/21/00	08/21/00	P	1.572 E-4	1.283 E-4	ABOVE	FILL, SAND, SILTY CLAY, STIFF CLAY
SMW6	08/22/00	08/22/00	w	1.341 E-3	3.674 E-3	ABOVE	SANDY GRAVEL, FILL
SMW6-99	08/23/00	08/23/00	w	3.665 E-5	5.917 E-5	CLOSE	CLAY AND SAND
IMW6	08/22/00	08/22/00	P	1.352 E-3	1.433 E-3	ABOVE	SANDY GRAVEL, FILL
SMW7	08/23/00	08/23/00	P	1 987 E-4	2.239 E-4	ABOVE	SANDY FILL, CLAY FILL
SMW8	11/17/00	11/17/00	U	NA	NP DRY	IN	SILTY CLAY
SMW9	08/22/00	08/22/00	P	NV	1.174 E-2	IN	SANDY FILL
IMW9	08/22/00	08/22/00	w	4.769 E-4	4,507 E-4	ABOVE	SANDY FILL, CLAY AND SILT
DMW9	08/31/00	11/15/00	U/C	3.846 E-7	4,33 E-7	ABOVE	STIFF-V.SOFT CLAYS
SMW10	08/22/00	08/22/00	W	1.035 E-3	3.351 E-3	ABOVE	CONCRETE, GRAVEL, MISC FILL
IMW10	08/22/00	08/22/00	P	3,001 E-4	3.072 E-4	ABOVE	FILL, PEAT, SILTY CLAY
DMW10	11/15-16/00	11/16/00		3.005 E-8	2.812 E-7	ABOVE	STIFF-V.SOFT CLAYS
SMW11	08/23/00	08/23/00	P	NV	3.571 E-4	iN	SAND, FILL
IMW11	08/23/00	08/23/00	W	2.431 E-4	3.097 E-4	ABOVE	FILL, PEAT, SILTY CLAY
DMWII	11/15/00	11/15/00	C	1.655 E-7	5.112 E-7	ABOVE	HARD-SOFT, SILTY-CLAY
SMW12	NP	08/29/00	U	NV	1.529 E-5	IN .	GRAVEL, SILT, SANDY-CLAY
IMW12	08/23/00	08/23/00	P	1.465 E-4	2.483 E-4	ABOVE	FILL AND ORGANICS
DMW12	11/15-16/00	11/16/00	C	2.854 E-7	3.172 E-7	ABOVE	V.STIFF-SOFT, SILTY-CLAY
SMW13	08/25/00	08/25/00	w	NV	1.694 E-3	IN	FILL, CLAYS, SILT
1MW13	08/24/00	08/24/00	W	1.103 E-4	1.116 E-4	ABOVE	SILT, SILTY-SAND, WOOD, SILTY-CLAY
DMW13	11/16/00	11/16/00	С	2.657 E-7	3.166 E-7	ABOVE	V.STIFF-V.SOFT, SILTY-CLAY
SMW14	08/23/00	08/23/00	Р	NV	2.241 E-1	IN	GRAVEL, CONCRETE, SILTY-CLAY
SMW15	11/1600	1.1/16/00	.C	NV	2.65 E-6	IN	FILL, SILTY-CLAY, SILT
SMW16	NP	08/29/00	Ū	NV	1.17 E-2	IN .	SLAG, GRAVEL
SMW17	08/23/00	08/23/00	P	NV	2.729 E-3	IN.	SILTY-CLAY, GRAVEL, SLAG, SILT, CLAY
SMW18	11/17/00	11/17/00	C	NV	3.156 E-5	IN	SILTY-GRAVEL, CLAY
SMW19	08/23/00	08/23/00	P	NV	5.045 E-4	IN / CLOSE	FILL, CLAY, SAND, SILTY-CLAY
SMW20	NP	08/25/00	Р	NV	2.312 E-3	iN	FILL, SLAG, SILT
SMW21	08/25/00	08/25/00	P	NV	1.794 E-3	IN	FILL, CINDERS, CLAY, GRAVEL, SILTY-CLAY
SMW22	NP	08/24/00	. P	NV	4.472 E-5	JN	FILL, CINDERS, SILTY CLAY
SMW23	NP	08/28/00	U	NV	1.528 E-2	IN	GRAVEL, SAND, SILT, CLAY, FILL
SMW24	08/24/00	08/24/00	P	NV	1.348 E-1	IN	SAND, GRAVEL
SMW25	08/24/00	08/24/00	P	NV	1.164 E-2	IN / CLOSE	FILL, PEAT, SILTY-FILL, CLAY
SMW26	08/30/00	11/16/00	U	6:377 E-6	NO	ABOVE	CLAYEY-SAND, SILT, SLAG, CLAY
SMW27	08/31/00	08/31/00	Ü	3.177 E-4	7.014 E-4	ABOVE	SLAG, CINDERS, SANDS, SILT
PZ1	08/24/00	08/24/00	P	1.186 E-5	1.661 E-5	ABOVE	GRAY-GREEN CLAY BELOW FILL

NOTES:

FH - Falling head slug test.

RH - Rising head slug test. K - Hydraulic conductivity. NP - Not performed. / NP DRY-Not enough water to run test

NV - Test not valid. Static water level within screened interval.

NO - Solution could not be obtained from data.

Test unit - W = URS unit first series; U = URS unit second series; C = URS unit third series; P = Rental unit.

URS

Table 14
Mean Hydraulic Conductivities - August and November 2000
BASF Property, Riverview Michigan

Shallow Monitoring Wells

	 	
		ED K (FT/MIN)
WELL#	FH_	RH
SMW1	NV	1.43E-03
SMW4	NV	1.40E-03
SMW4-99	5.03E-04	4.10E-04
SMW5	NV	9.38E-03
SMW5-99	4.18E-04	6.12E-04
SMW6	1.34E-03	3.67E-03
SMW6-99	3.67E-05	5.92E-05
SMW7	1.99E-04	2.24E-04
SMW8	NV	NO
SMW9	NV	1.17E-02
SMW10	1.04E-03	3.35E-03
SMW11	NV	3.57E-04
SMW12	NV	1.53E-05
SMW13	NV	1.69E-03
SMW14	NV	2.24E-01
SMW15	NV	2.65E-06
SMW16	NV	1.17E-02
SMW17	NV	2.73E-03
SMW18	NV	3.16E-05
SMW19	NV	5.05E-04
SMW20	NV	2.31E-03
SMW21	NV	1.79E-03
SMW22	NV	4.47E-05
SMW23	NV	1.53E-02
SMW24	NV	1.35E-01
SMW25	NV	1.16E-02
SMW26	6.38E-06	NO
SMW27	3.18E-04	7.01E-04
PZ1	1.19E-05	1.66E-05

Mean

4.30E-04

1.63E-02

Intermediate Monitoring Wells

	ESTIMATED K (FT/MIN)			
WELL#	FH	RH		
IMW1	6.24E-05	5.29E-05		
IMW5	1.57E-04	1.28E-04		
IMW6	1.35E-03	1.43E-03		
IMW9	4.77E-04	4.51E-04		
IMW10	3.00E-04	3.07E-04		
IMW11	2.43E-04	3.10E-04		
IMW12	1.47E-04	2.48E-04		
IMW13	1.10E-04	1.12E-04		

Mean

3.56E-04

3.80E-04

Deep Monitoring Wells

	ESTIMATED K (FT/MIN)			
WELL#	FH	RH		
DMW9	3.85E-07	4.33E-07		
DMW10	3.01E-08	2.81E-07		
DMW11	1.66E-07	5.11E-07		
DMW12	2.85E-07	3.17E-07		
DMW13	2.66E-07	3.17E-07		

Mean

2.26E-07

3.72E-07

NOTES:

FH - Falling head slug test.

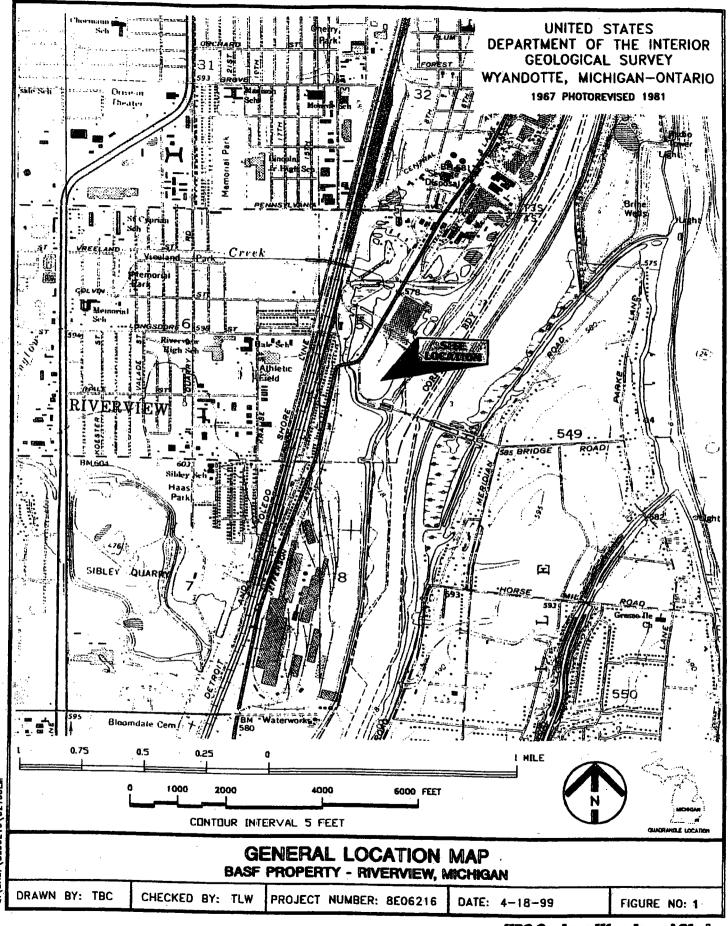
RH - Rising head slug test.

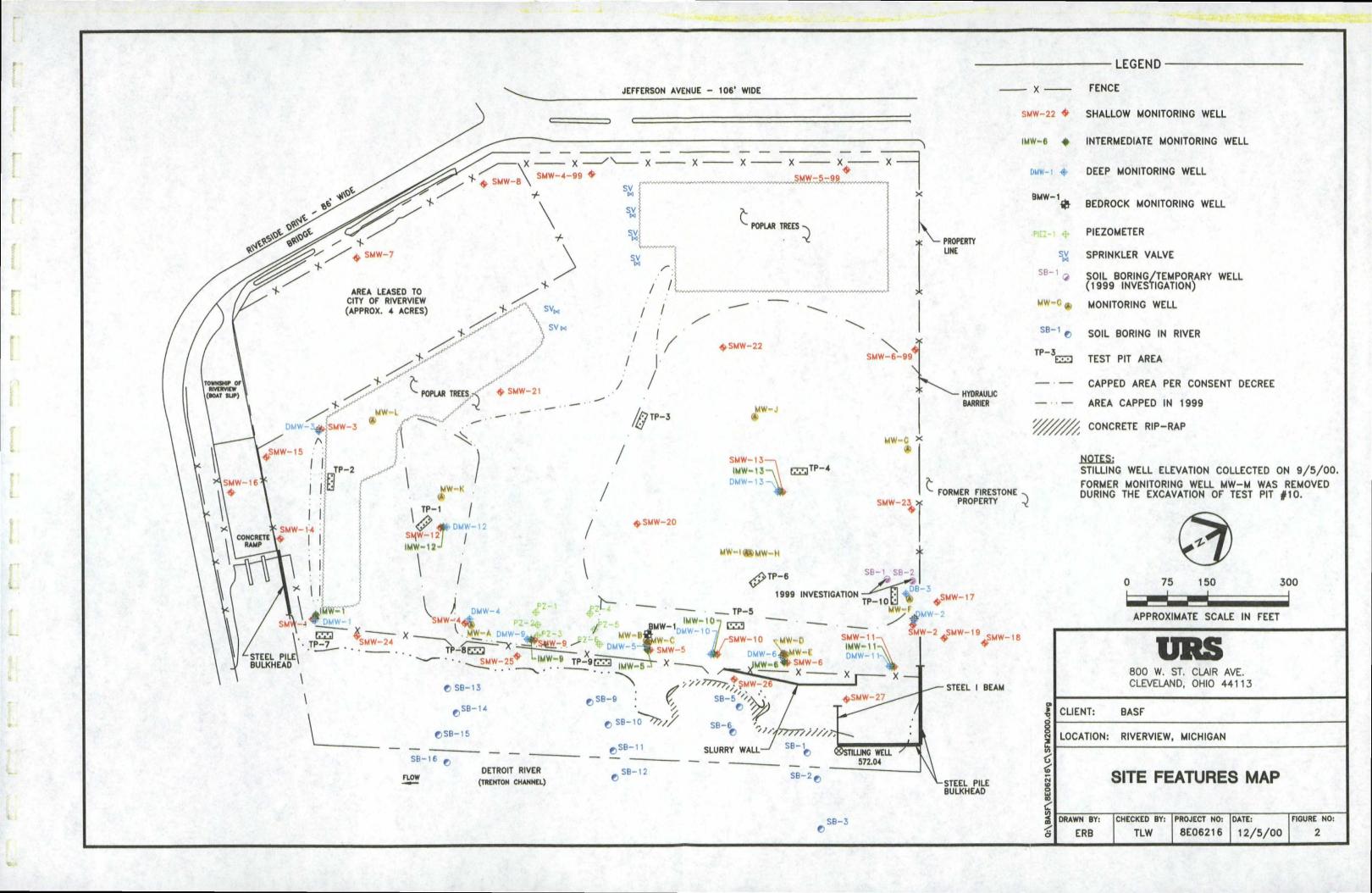
K - Hydraulic conductivity.

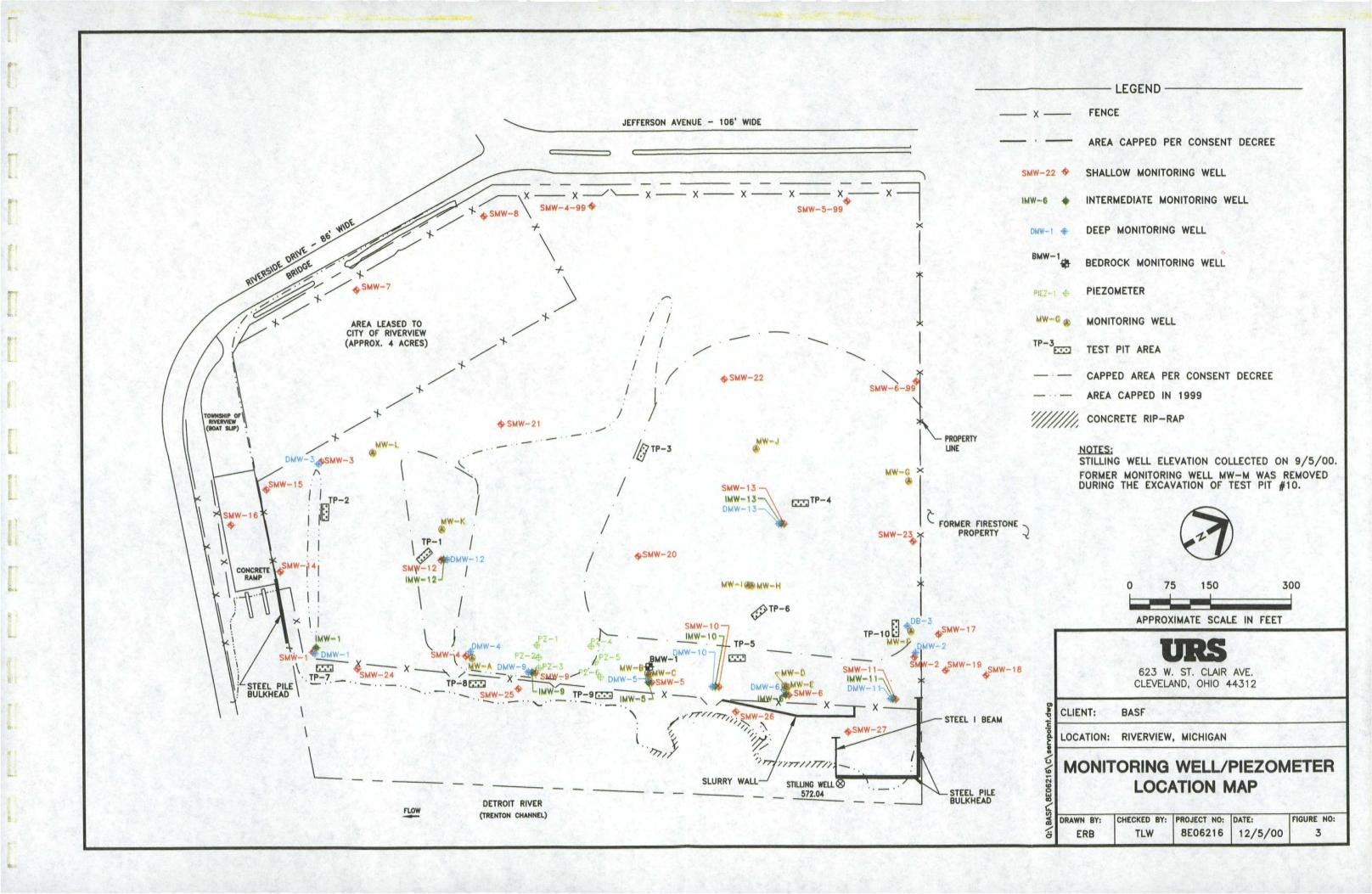
NP - Not performed.

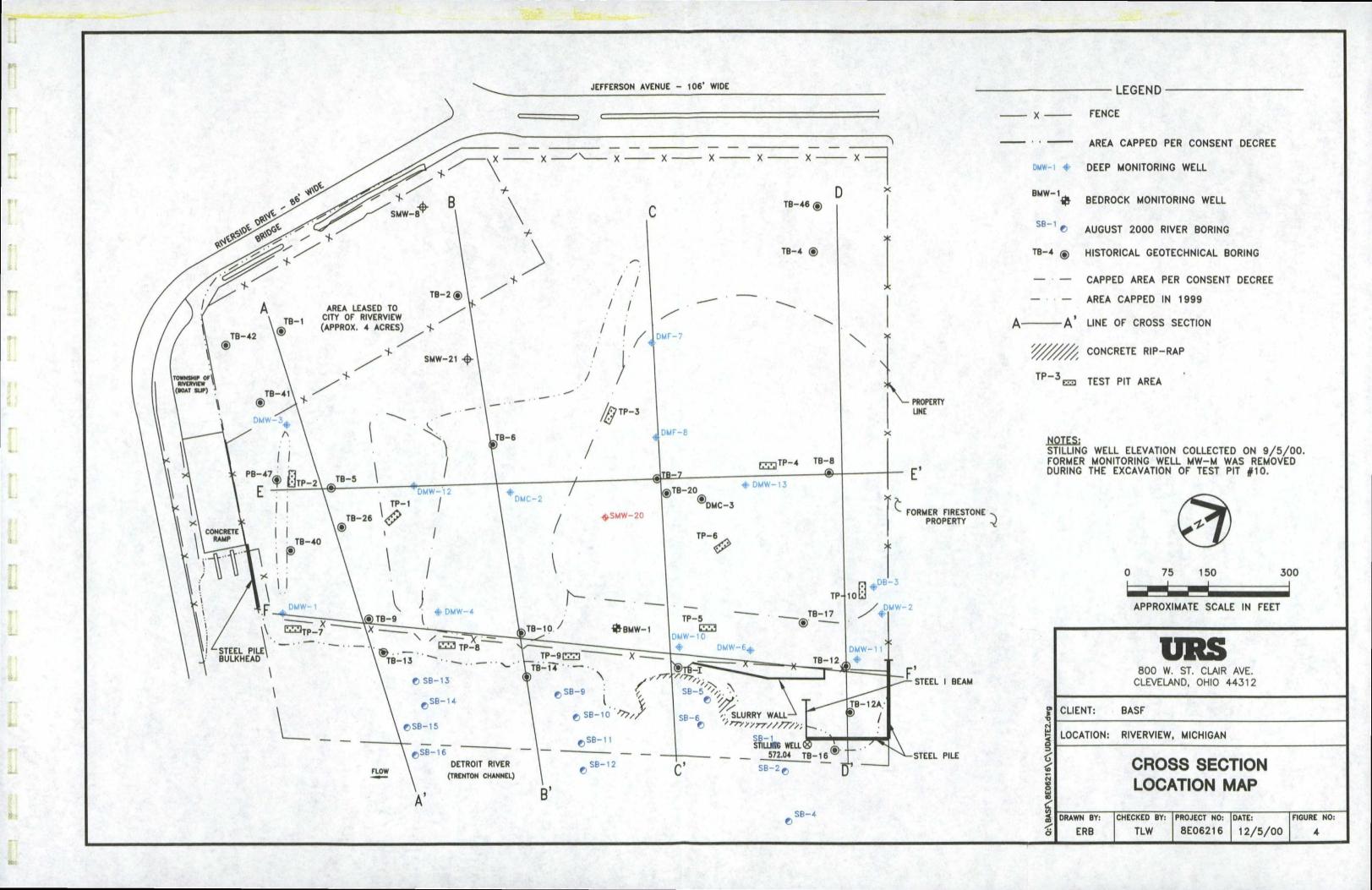
NV - Test not valid. Static water level within screened interval.

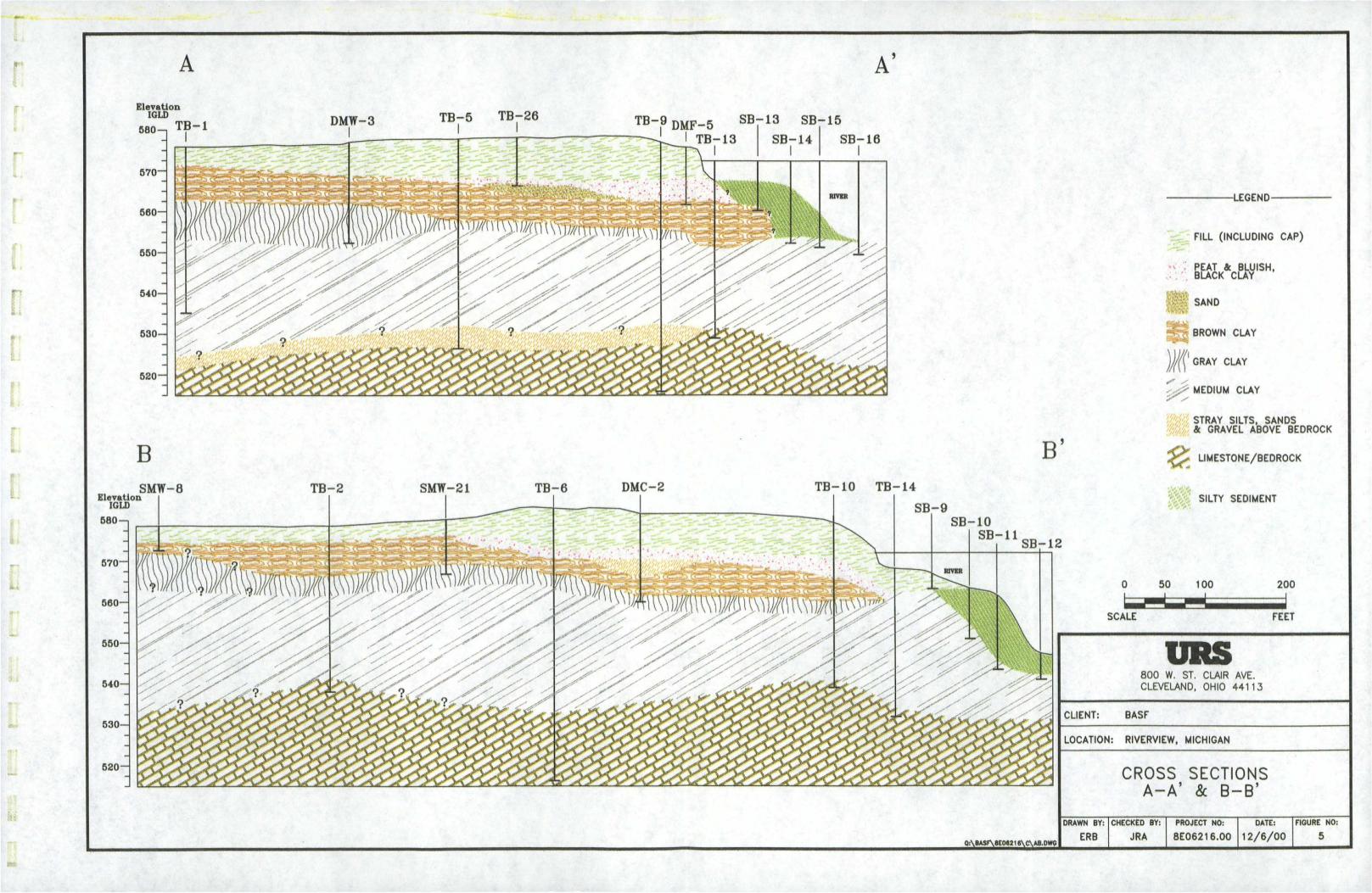
NO - Solution could not be obtained from data.

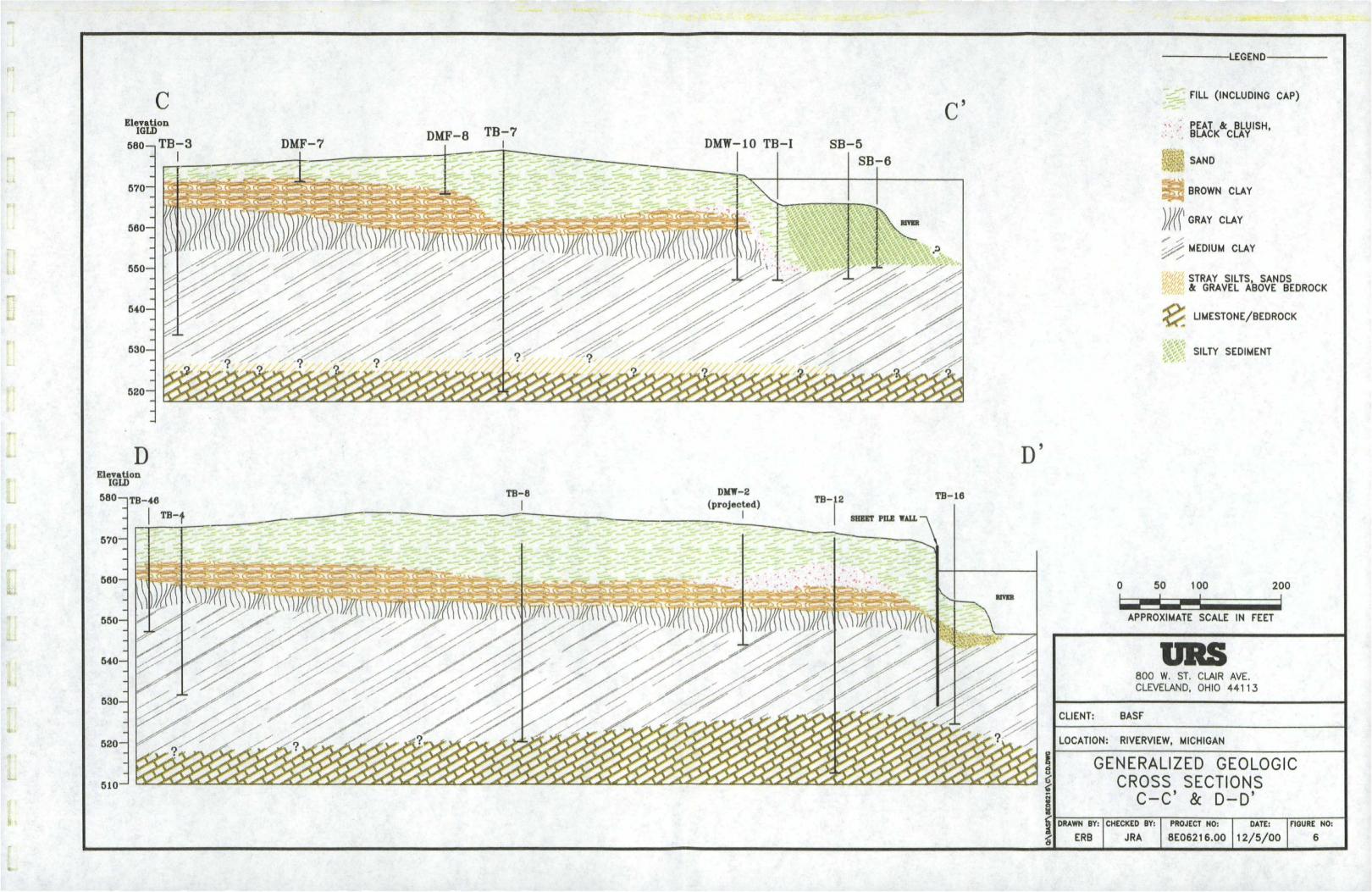

Table 15
BASF Riverview, Michigan
Concrete Samples
GSI Criteria Comparison
Printed: 1-31-00

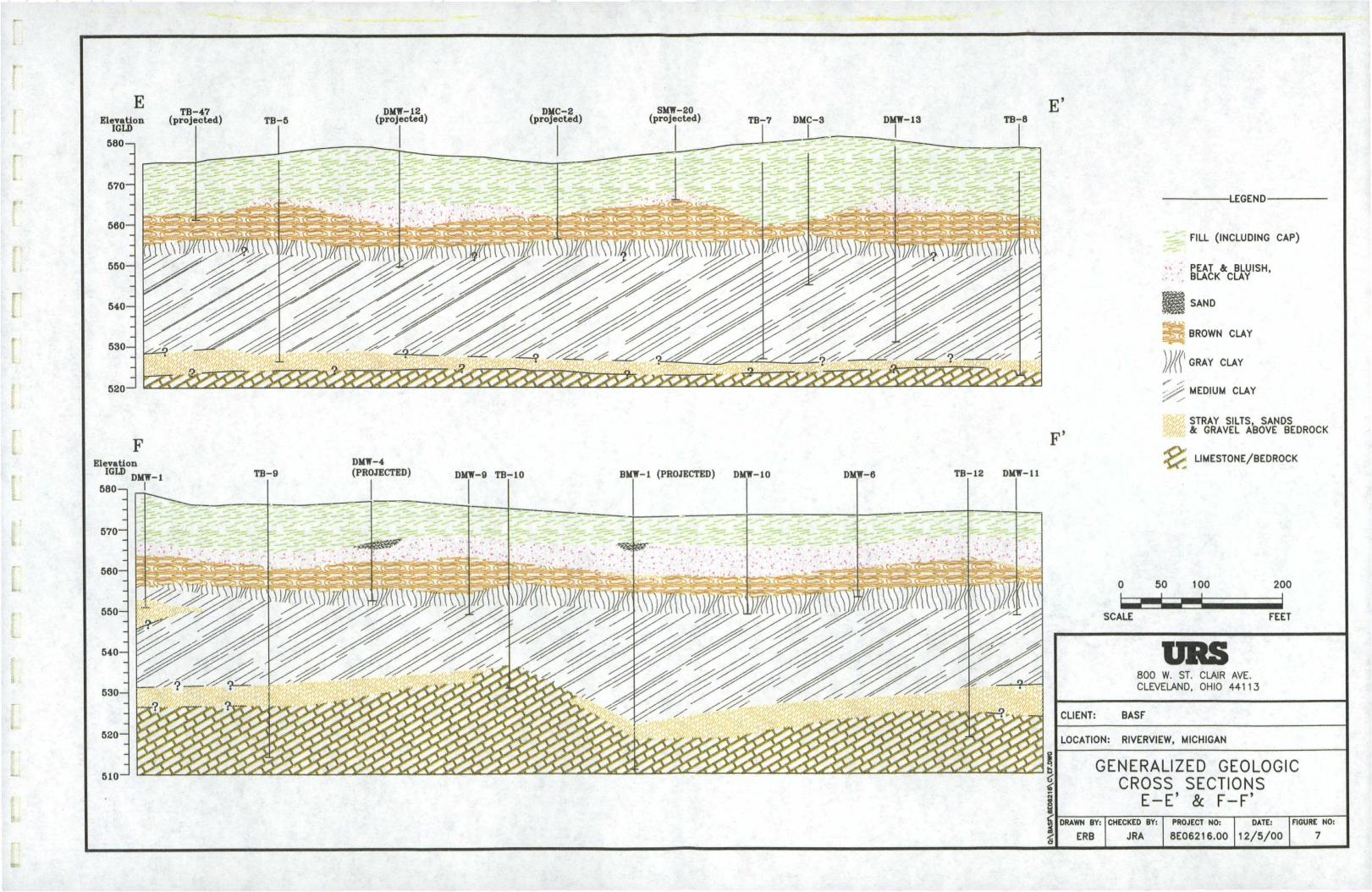

SAMPLE#		RR-1 BOTTOM	RR-1 MIDDLE	RR-1 TOP	RR-2 BOTTOM	RR-2 MIDDLE	RR-2 TOP	RR-3 BOTTOM	RR-3 MIDDLE
ANALYTE	GSI	J035003	J035002	J035001	J035006	J035005	J035004	J035009	J035008
ANALYTE	Criteria	8/14/00	8/14/00	8/14/00	8/14/00	8/14/00	8/14/00	8/14/00	8/14/00
Mercury mg/kg	0.13	0.05 ND	0.05 ND	0.05 ND	0.05 ND	0.05 ND	0.05 ND	0.21	0.05 ND

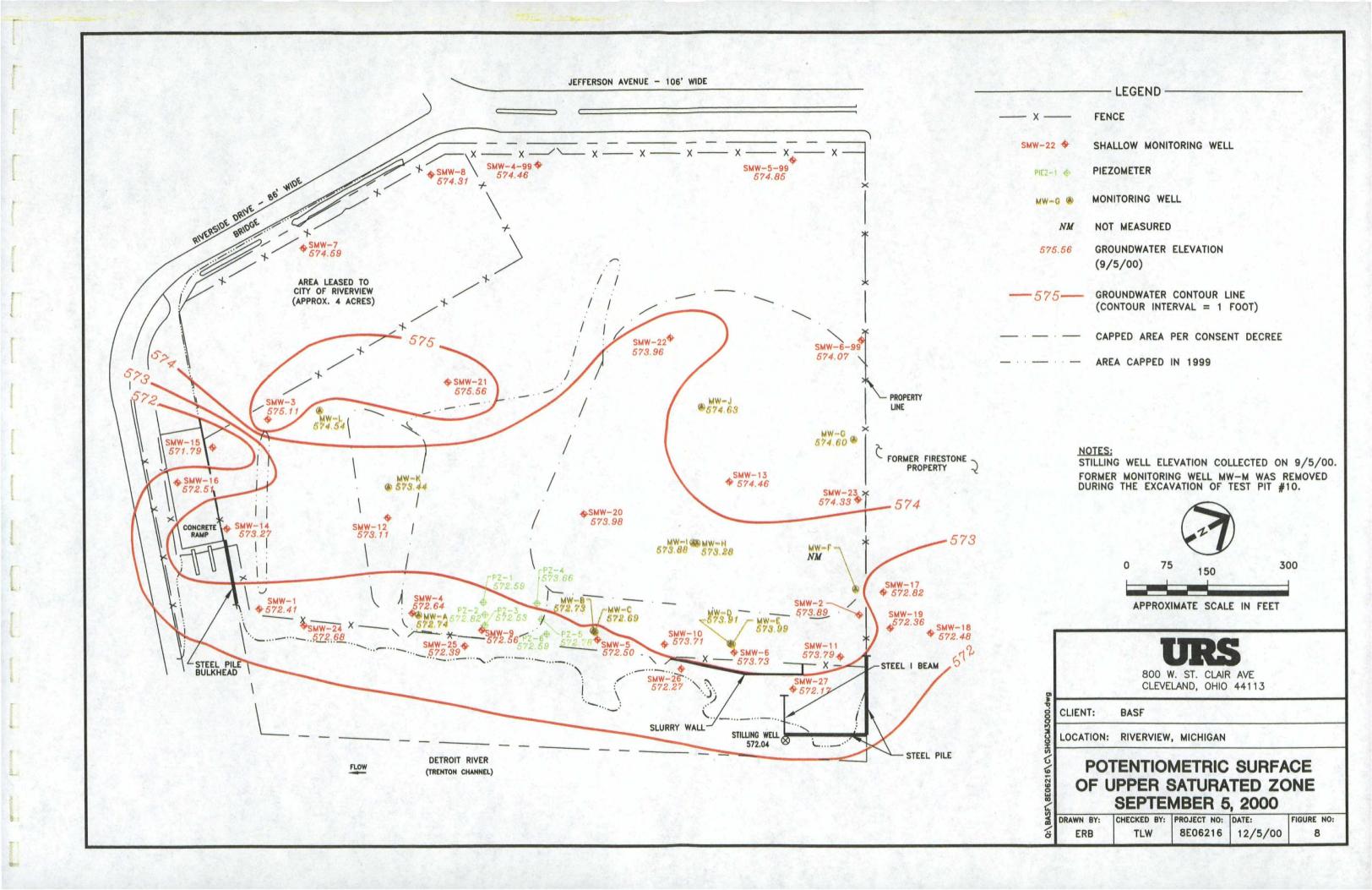

the state of the transfer to the transfer to the transfer of the transfer to t

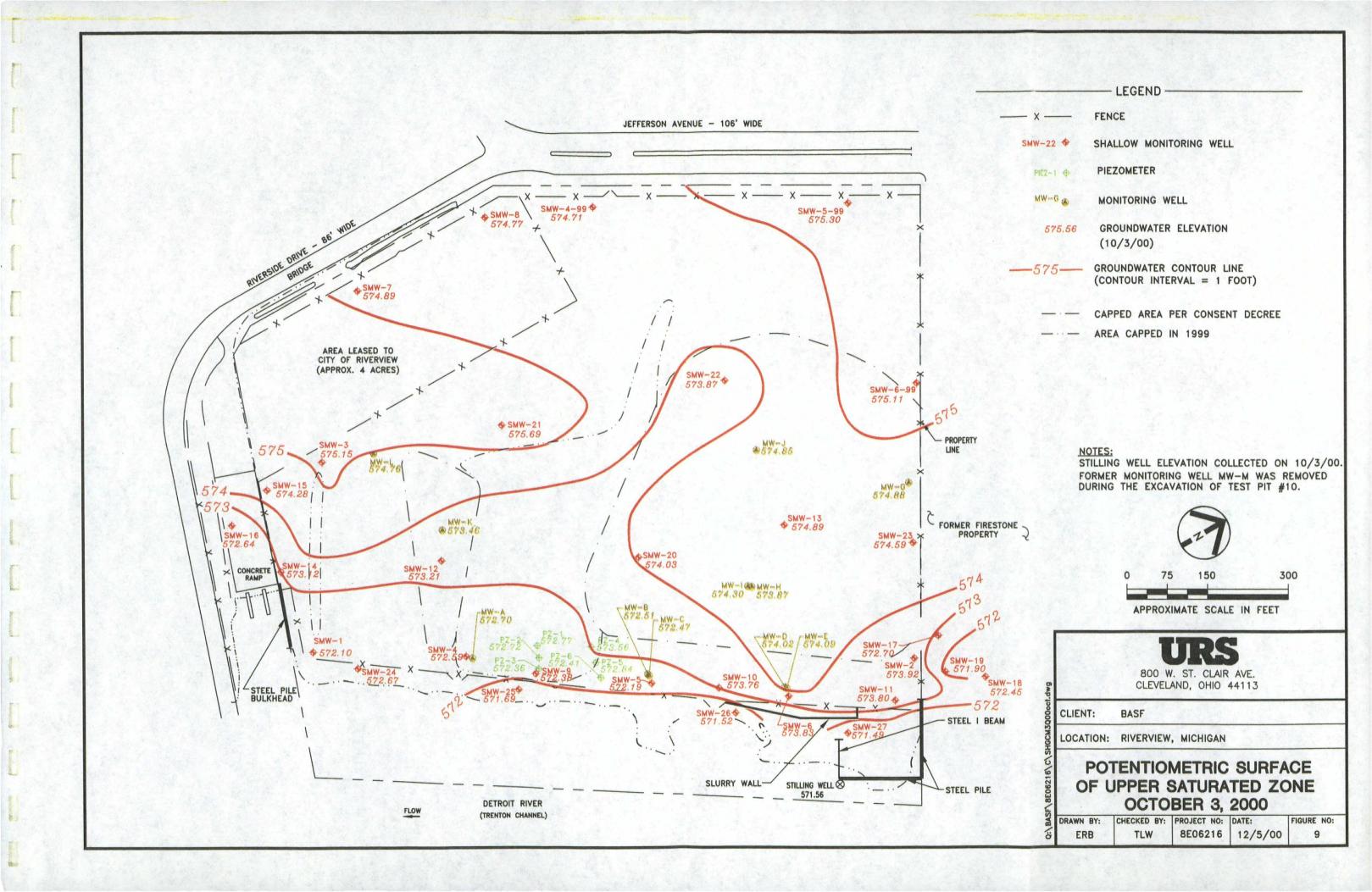

SAMPLE #		RR-3 TOP	RR-4 BOTTOM	RR-4 MIDDLE	RR-4 TOP	RR-5 BOTTOM	RR-5 MIDDLE	RR-5 TOP
ANALYTE	GSI	J035007	J035012	J035011	J035010	J035015	J035014	J035013
ANALYTE	Criteria	8/14/00	8/14/00	8/14/00	8/14/00	8/14/00	8/14/00	8/14/00
Mercury mg/kg	0.13	0.05 ND	0.2	0.05 ND	0.16	0.3	0.1	0.05 ND

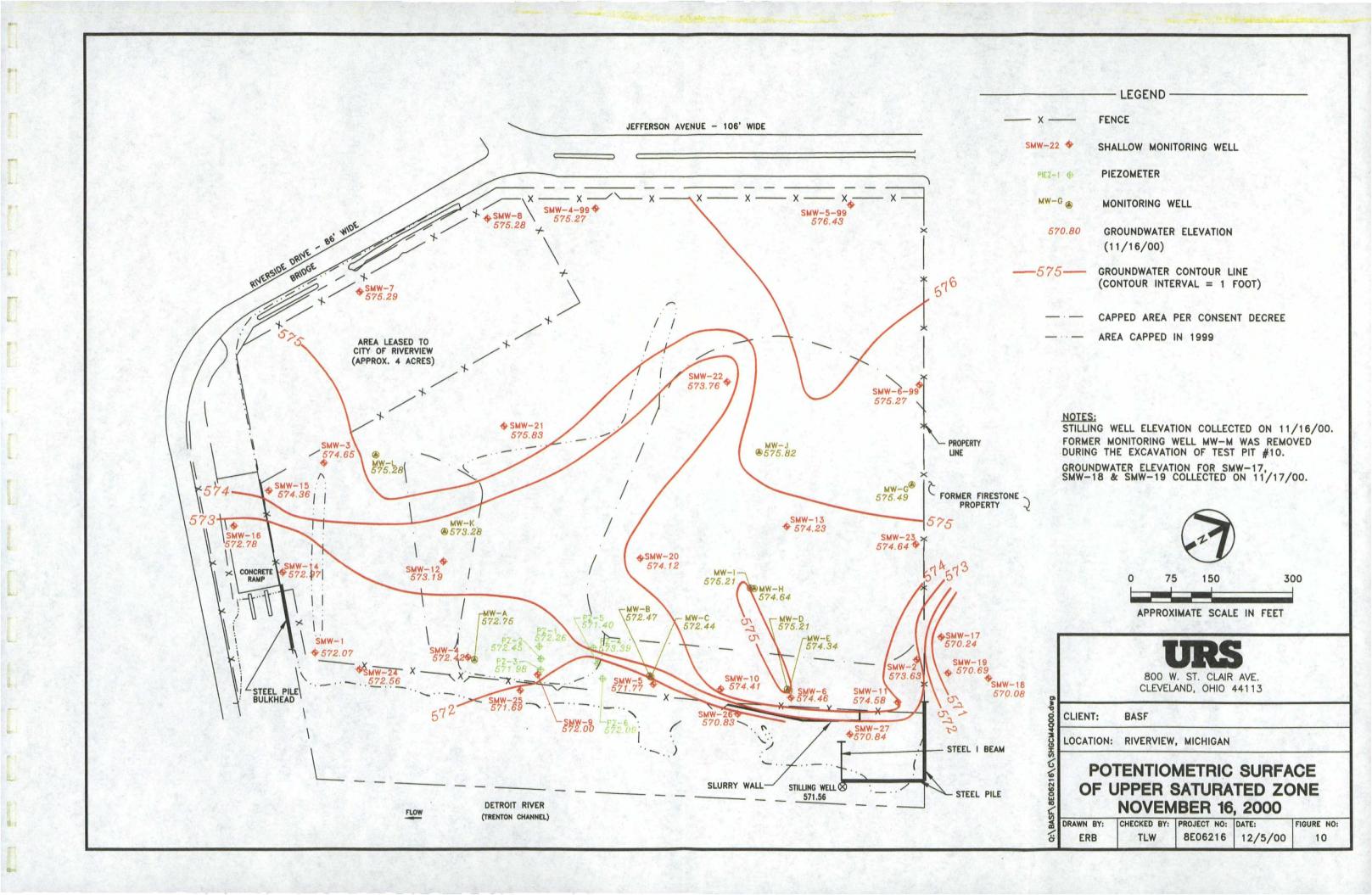

Bold results indicate GSI Criterion exceedance.

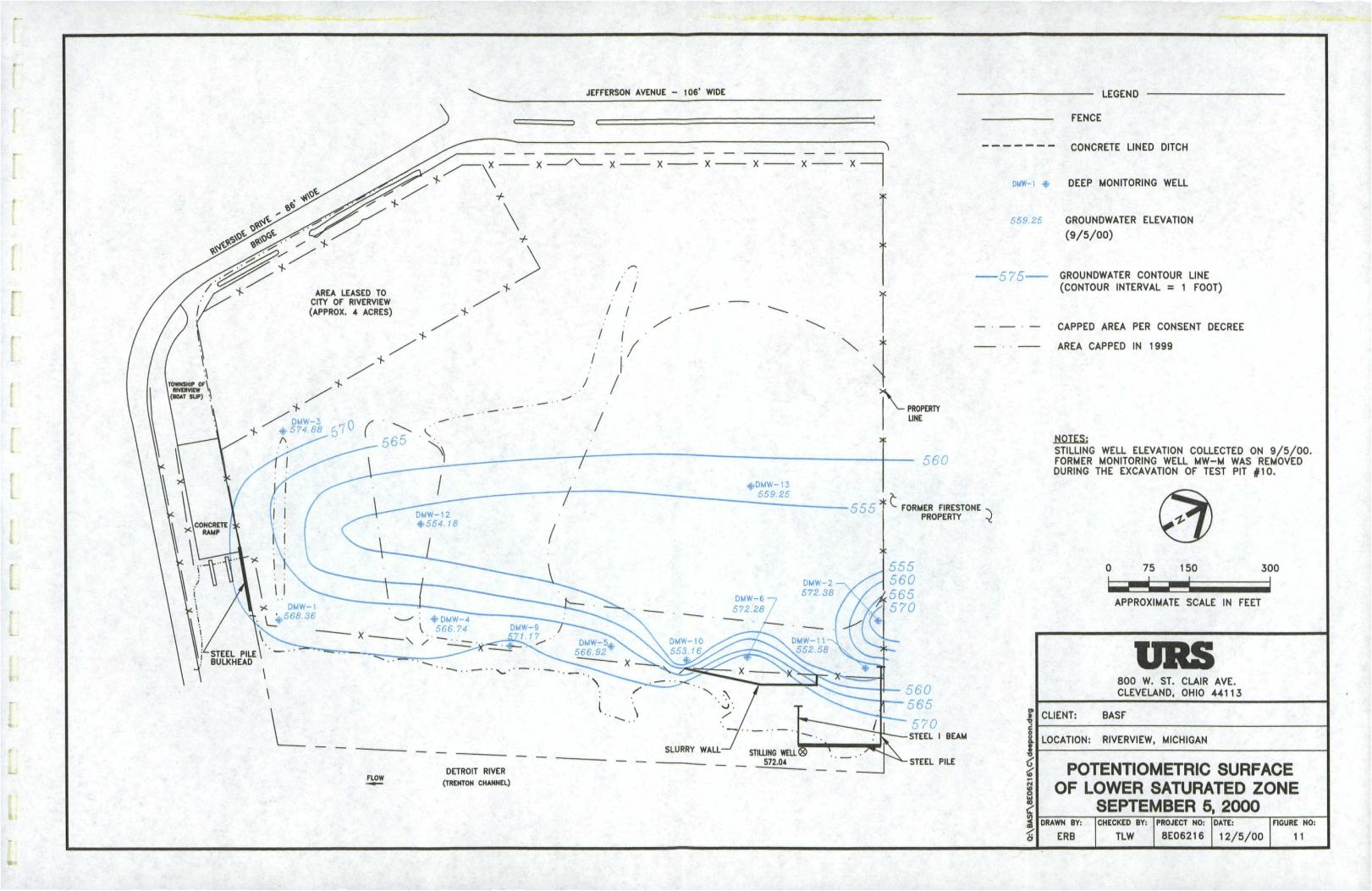


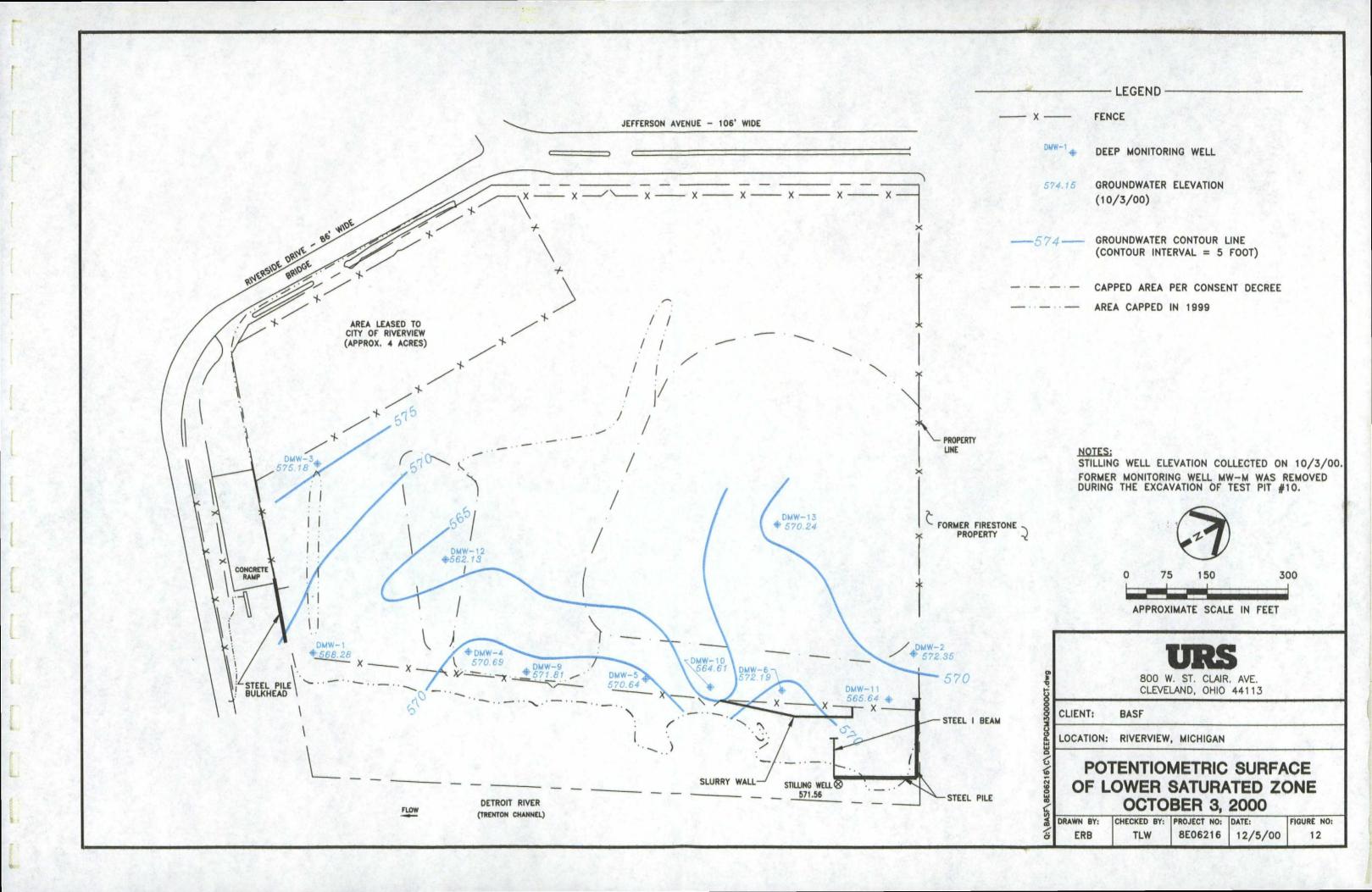


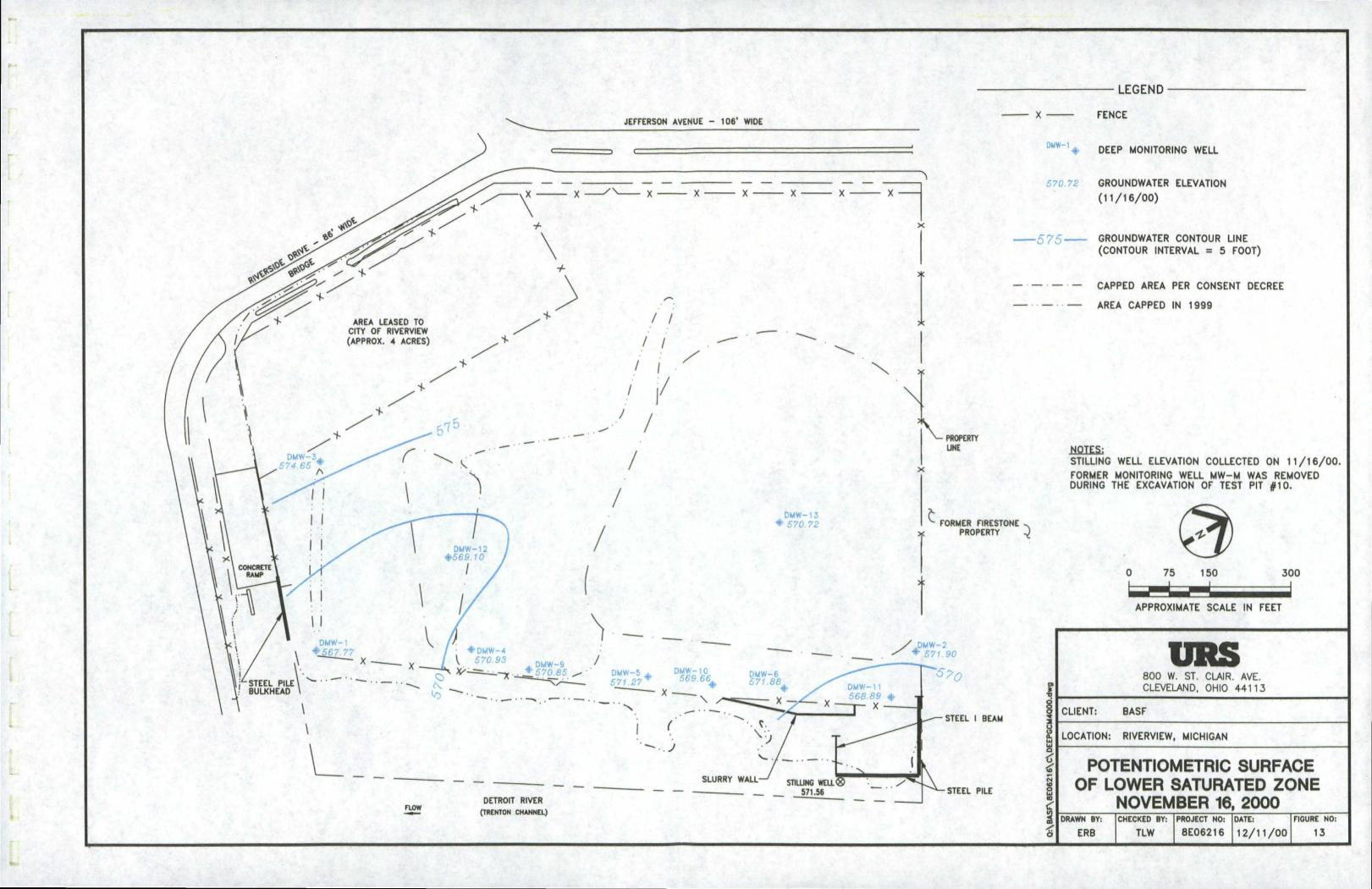












Appendix A

BASF RIVERVIEW MDEQ INVESTIGATION

SURFACE GEOPHYSICAL SURVEYS

Scope and Objectives

Surface geophysical surveys were used as part of the site investigation of the BASF Corporation Riverview site in Riverview, Michigan. These investigations were conducted as part of a remedial investigation and feasibility study related to potential soil and groundwater contamination at the site.

The objective of the geophysical investigation was to further delineate the extent of buried waste materials at the site. Available information indicates that buried materials at site could include foundations and debris from several buildings that were previously located on the property. In addition, during the initial phase of the subsequently terminated site development by Federal Marine Terminals, and the related environmental investigation that followed, numerous 55-gallon steel drums were reportedly encountered at the site.

Two types of geophysical investigation methods, including the electromagnetic EM method and the magnetic method were utilized to accomplish the survey objective. Descriptions of the two geophysical methods are provided below. Descriptions of the survey instrumentation, field methods and results are also provided.

Site Description

The Riverview site is located along the western bank of the Trenton Channel of the Detroit River and is bordered to the west by Jefferson Avenue, to the north by industrial property owned by Material Processing Inc. and to the south by the Township City of Riverview boat slip facility. The site comprises approximately 30-acres of relatively flat grass field. Several rows of recently planted poplar trees buffer the western and southern perimeters of the site.

Geophysical Methods

Electromagnetic Method

The Geonics EM-31 instrument was used to perform the EM survey. The EM method using the Geonics EM-31 provides a rapid means of measuring the electrical conductivity of subsurface materials including soil and rock. EM data can aid the characterization of:

- lateral extent of landfill and/or trench materials:
- buried metallic objects;
- depth and thickness of subsurface units;

- soil and rock units, and lateral variations within the units; and
- lateral extent of paleochannels or former ponds.

The EM method using the EM-31 involves the induction of an electrical current into the earth. A small alternating current is generated by a transmitter coil that transmits a primary, time-varying magnetic field into the ground. Through inductive coupling, the primary magnetic field produces small eddy currents in the subsurface, which in turn create their own secondary magnetic field. A receiver coil measures both the primary and secondary fields. Changes in magnitude and phase of the individual currents are output as voltages and are related to the subsurface electrical conductivity.

The depth of investigation of the EM-31 is dependent on the instrument mode of operation. The EM-31 can be operated in the horizontal and vertical dipole modes, which provide maximum depths of investigation of approximately 7 to 8 feet and 14 to 16 feet, respectively.

The EM-31 measures both the quadrature phase, and inphase components of the induced magnetic field. The quadrature phase is linearly related to the ground conductivity and is therefore particularly responsive to geologic variations. The inphase component reading is the ratio of the induced magnetic field to the primary field, and is more responsive to the presence of metallic objects than the quadrature phase.

Conductivity values for each component of the EM response can be plotted and contoured to evaluate the conductivity variations across the site. Interpretation of an EM contour map requires that the basic characteristics and causes of conductivity anomalies be kept in mind. Electrical conductivity is a function of the soil or rock type, the porosity and the permeability of the rock units, and the nature and extent of fluid filling the pore spaces. Most types of soil and rock are electrical insulators of low conductivity. The electrical conduction that takes place in the subsurface is primarily electrolytic and occurs through the interconnected moisture-filled pores contained in the matrix.

If a conductive body such as a metal drum is placed in the matrix, ion flow and conduction occurs preferentially through the metal, thus increasing the bulk conductivity. Conversely, if non-conductive materials such as unreinforced concrete are placed in the matrix, ion flow and conduction occur around the resistor, thus reducing the bulk conductivity. Therefore, landfill areas, which may have buried metallic objects, process wastes, sludge, or leachate, are generally manifested as conductivity highs, while landfill or hardfill areas, which may have buried concrete, asphalt, wood, or dry backfill soil materials, are generally manifested as conductivity lows. All these facets are superimposed on the geologic framework of the site, which can also produce varying conductivity conditions due to the variable characteristics and thicknesses of the lithologic units.

It should be noted that variations in both the quadrature and inphase readings from some background level are more diagnostic than the absolute values. Variations in conductivity can indicate variations in subsurface conditions. As discussed in the example above, landfill materials can sometimes produce a relative conductivity low (depending on the physical

characteristics of the materials). However, landfill materials that include metallic objects such as drums generally produce a relative conductivity high. In some instances the anomaly produced by a metallic object can appear as a dipole which is characterized by both high and low values in close proximity to each other. This occurs because the EM response can be affected by the interaction between the anomaly-producing body in the subsurface and the receiver and transmitter orientation of the instrument.

Variations in the subsurface conductivity resulting from buried metallic objects are generally manifested by relatively large (greater than 25 milliSiemens per meter (mS/m)) anomalies. However, these anomalies, as well as smaller ones, can be masked by the interfering effects of surface debris, buried utilities, overhead utilities, communications equipment, or any large metal structures in close proximity to the survey area.

Magnetic Method

Magnetic methods aid subsurface characterization through measurement of the earth's magnetic field and local variations in the field. For environmental applications, such a survey can be used for detection of buried metallic objects, areas of disturbed soil, or for reconnaissance geologic mapping. A magnetic survey involves the measurement of the earth's magnetic field at various points on the ground surface. Variations in the magnetic susceptibility of subsurface materials produce anomalies within the earth's magnetic field than can be resolved using a magnetometer.

Two types of magnetic measurements that can be obtained include magnetic total field and magnetic vertical gradient. The total field intensity is simply the magnitude of the earth's magnetic field vector. The magnetic vertical gradient is a measurement of the difference in the total magnetic field between two sensors set at different fixed heights above the ground. In general, the total field measurements are most suitable for reconnaissance surveys while gradient measurements allow resolution of more complex anomalies.

Magnetic measurements are affected by several sources that interfere with the desired magnetic signal. However, by using standard surveying techniques the effects of these sources of interference can be removed, or corrected from the magnetics data. Diurnal variations, which are dominated by temporal magnetic variations, are primarily caused by particle and electromagnetic radiation from the sun. These variations are often monitored by either reoccupation of a base station at prescribed time intervals, or by a continuously recording magnetic base station.

Magnetic values (or magnetic gradient values) can be plotted on a map and contoured so that variations over the site can be analyzed. Buried subsurface metal can be indicated by high magnetic values or high vertical gradients. Generally, areas with magnetic anomaly highs indicate buried ferromagnetic materials. Magnetic anomaly lows can indicate disturbed soils with no ferromagnetic constituents. In many cases, a magnetic anomaly will appear as a dipole characterized by both high and low values in close proximity to each other. This occurs because the amplitudes of the magnetic measurements are

dependent upon the direction the survey traverse approaches the anomalous magnetic field, and upon the orientation of the anomaly-producing object buried in the subsurface. The magnetic response from a ferromagnetic object of interest is proportional to the mass of the object and inversely proportional to object's depth of burial. Typically, a single drum can be detected to a depth of 10 to 15 feet. Groups of drums can be detected at depths of 25 feet or more.

Need for Two Types of Geophysical Investigation Techniques

As is discussed above, EM surveying using the EM-31 instrument is a very useful method for delineating waste disposal materials and areas of disturbed soils. However, the method is limited to a depth of investigation of approximately 16 feet. The magnetics method is a very useful tool for delineating ferromagnetic objects, such as drums, to depths greater than 16 feet. However, the magnetic survey technique does not provide for delineating non-ferromagnetic waste disposal materials, such as sludge, brine or aluminum containers, and is typically less effective than the EM method for delineating areas of disturbed soil. Therefore, it was necessary to supplement the EM survey with a magnetic survey in order to more completely address the investigation objectives.

Instrumentation and Field Methods

Field Program

URS conducted the geophysical field investigation during the period of July 17 to 22, 2000. Technical staff from the Michigan Department of the Environments consultant, Malcolm Pirnie, were present during the field investigation to provide regulatory oversight of the geophysical program. Staff from the MDE, also visited the site during the geophysical field investigation.

Grid Layout

A site specific surveying coordinate system was established during previous phases of investigation at the site. This coordinate system's origin (Northing = 0 feet, and Easting = 0 feet) is located at the northwest corner of the property. The coordinate system's Y-axis (Northing) runs parallel to the fence line that forms the northern boundary of the site. The X-axis (Easting) runs perpendicular to this fence line.

Prior to commencement of the geophysical investigation, a land surveyor established a base survey grid consisting of wooden lathe placed at 100-foot centers along grid lines Y = 0 feet and Y = -300 feet. The geophysical investigation team supplemented this base grid with PVC pin flags placed at 20-foot centers along lines spaced at 100 feet centers (Y = 0 feet, -100, -200 feet, -300 feet, etc... to -1,200 feet.

EM Survey

The EM data were collected using a Geonics EM-31 using a data station spacing of 2.5 feet along roughly north-south oriented survey lines spaced 20-feet apart across the entire area of concern. Quadrature and inphase measurements were collected at each data station using the vertical dipole mode. The EM-31 readings were recorded using a data logger that allowed the operator to store and record station coordinate information and EM data simultaneously.

Upon completion of the EM survey, the data were downloaded to a personal computer. The data were then formatted for input to a contouring program. Data plotting and contouring was accomplished using the computer software SURFER. Inputs to the contouring program included the station coordinates, EM readings, a selected spacing for gridding the raw data, and a contour interval. Color enhanced contour maps were generated for both the quadrature and inphase data.

Magnetic Survey

Magnetic total field and vertical gradient data were collected using a GeoMetrics G858G cesium vapor magnetic gradiometer using a data station spacing of 2.5 feet along roughly north-south oriented survey lines spaced 20-feet apart across the entire area of concern. Continuously recorded magnetic base station data were collected using a separate GeoMetrics G856 magnetometer, to facilitate making the diurnal corrections to the data.

Upon completion of the magnetic survey, the data were downloaded to a personal computer. The data were then formatted for input to a contouring program. Data plotting and contouring was accomplished using the computer software SURFER. Inputs to the contouring program included the station coordinates, magnetic readings, a selected spacing for gridding the raw data, and a contour interval. Color enhanced contour maps were generated for both the magnetic total field and vertical gradient data.

Geophysical Investigation Results

The results of the geophysical investigation are depicted in the contour maps included as Figures 1 through 4. Figures 1 and 2 depict the EM quadrature and inphase response results, respectively. Figures 3 and 4 depict the magnetic vertical gradient and magnetic total field results, respectively.

The most prominent anomalies indicated from the EM results (Figures 1 and 2) are apparent as quadrature and inphase response highs that cover large areas located across the central and western portions of the site. These anomalies are believed to represent elevated concentrations of brine in the groundwater in those areas of the site. This interpretation is support by the following observations:

• The magnetics survey results do not appear to indicate corresponding magnetic anomalies in those areas. This indicates that the anomalies do not appear to represent buried ferromagnetic materials.

- The anomalies are indicated by quadrature response (terrain conductivity) values ranging from about 160 mS/m to greater than 320 mS/m. This range is consistent with the range typical of brine.
- The subject group of EM anomalies includes the anomaly located at the northeast corner of the site. This anomaly appears to be confined to the western side of the slurry wall constructed to control brine from migrating off site into the Trenton Channel. Thus, if the interpretation that these anomalies represent brine is correct, then the slurry wall appears to be working effectively.

The EM results indicate several other smaller anomalies that appear to represent observable surface features including fence lines, monitoring well casings, sheet pile walls, utilities and surface debris. These features are also apparent on the contour maps depicting the magnetics survey results (Figures 3 and 4). However, these features as well as several other features that appear to represent buried metal objects are generally better defined by the magnetics survey results due to masking effects associated with the large EM anomalies apparently related to brine.

The magnetics results indicate anomalies located in the southwestern and southern portions of the site that appear to represent the remains of foundations of two buildings formerly located in those areas of the site. The magnetics results also indicate numerous, relatively large anomalies located along the eastern perimeter of the site. These anomalies appear to be associated with blocks of reinforced concrete present along the shoreline of the site.

Numerous additional small anomalies are apparent on the magnetics results maps. Several of these anomalies correlate with the location of rebar and other metal objects associated with the irrigation system at the site. This correlation was confirmed during the detailed site reconnaissance conducted immediately following completion of the geophysical data collection. The magnetics results also indicate several other anomalies that do not appear to correlate with observed surface features. However, these anomalies cover small areas (tens of square feet or less) and are relatively low amplitude. These results indicate that the anomalies indicate small metal objects that are buried near the surface.

No other anomalies that appear to be associated with waste disposal are apparent from the geophysical investigation results. Specifically, no features, such as other large linear, or rectangular shaped anomalies which would typically be characteristic of waste disposal trenches or cells, are apparent from these results. In addition, none of the anomalies appear to indicate the possible presence of large concentrations of buried drums.

Timothy King

08/07/2000 05:33 PM

To: lanigai@basf-corp.com

cc: Tim Whipple/Cleveland/URSCorp@URSCORP, Keith

Mast/Cleveland/URSCorp@URSCORP

Subject: BASF Riverview - Geophysical Anomalies

As per your request, attached is the draft of the Excel file tabulating the geophysical anomalies interpreted from the EM and magnetics surveys at the BASF Riverview site. Based on my review of the geophysical data, I would recommend excavating test pits at the following locations:

1) Location: Easting 320 - 340 feet, Northing -560 to -580 feet

Purpose: Investigate grouping of suspected buried metal objects located within capped drainage ditch area

2) Location: Easting 380 to 420 feet, Northing -690 to -720 feet

Purpose: Investigate relatively large anomaly indicative of suspected buried metal objects. No surface indications of a possible cause of this anomaly were observed during the site reconnaissance.

3) Location: Easting 600 to 760 feet, Northing -20 to -100 feet

Purpose: Investigate grouping of suspected buried metal objects located with the northern capped area

4) Location: Easting 620 to 780 feet, Northing -1120 to -1200 feet

Purpose: Investigate grouping of anomalies outside of capped areas. No surface indications of a possible cause of this anomaly were observed during the site reconnaissance.

5) Location: Easting 720 to 900 feet, Northing -1200 to -1080 feet

Purpose: Investigate relatively large anomaly. No definitive surface indications of a possible cause of this anomaly were observed during the site reconnaissance.

6) Location: Easting 840 to 920 feet, Northing -350 to -500 feet

Purpose: Investigate grouping of relatively large anomalies in filled land area.

However, these recommendations are based solely on my interpretation of the geophysical data. Other issues including utility line avoidance, permitting, existing contaminant distribution information and health and safety considerations as well as concerns over disturbing the various engineered caps, may warrant selection of alternate locations.

Please call me at (301) 670-3309 if you have any questions or require additional information.

Regards,

Tim King

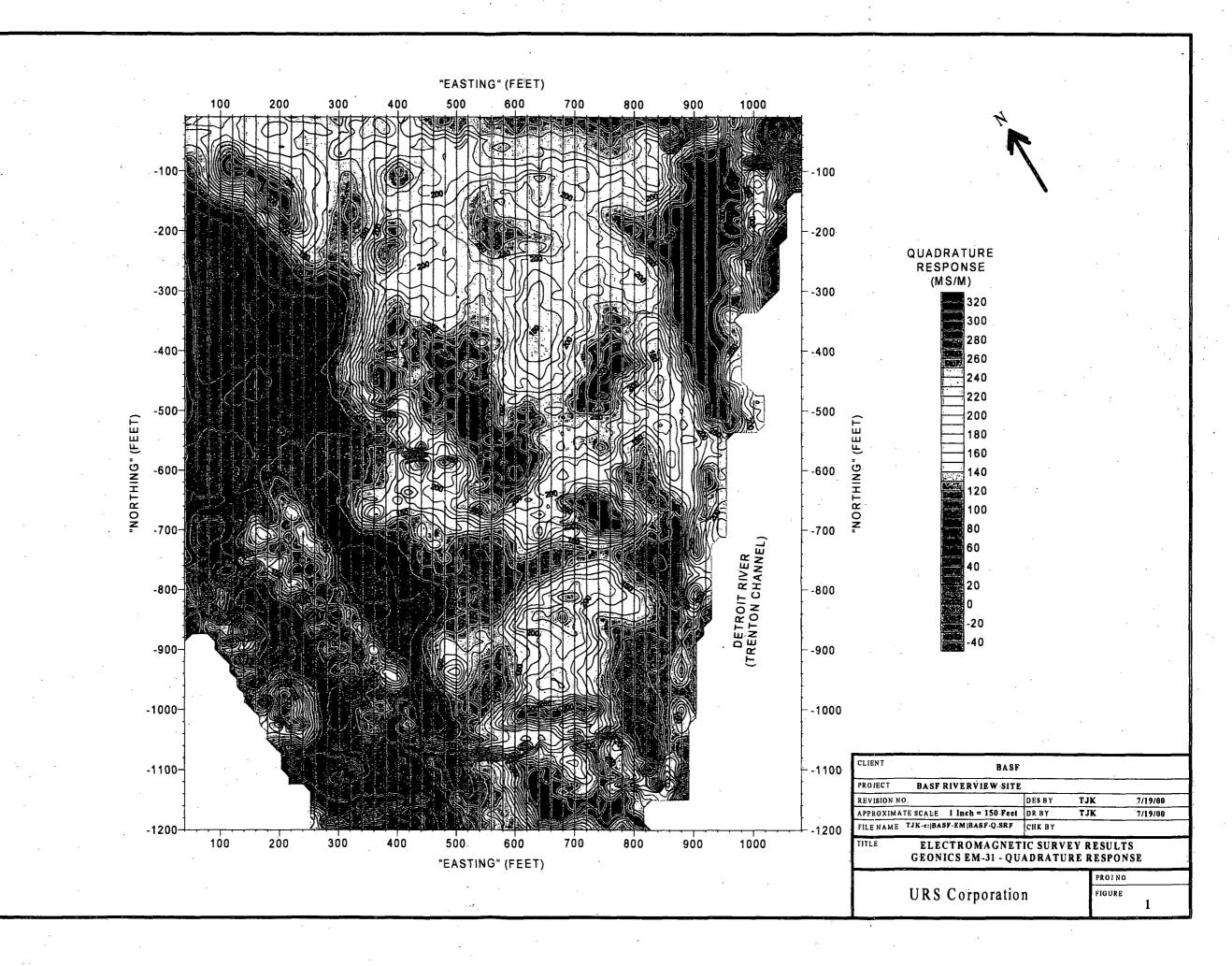
Easting	Northing		<u> </u>
(feet)	(feet)	Description	Interpretation
40 to 1080	-20	Linear EM and Magnetics anomaly	Fence line
40	-460	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
60	-65	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
60	-140	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
60	-310	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
40 to 180	-680 to -600	Linear EM and Magnetics anomaly	Fence line
160 to 520	-600 to -1200	Linear EM and Magnetics anomaly	Fence line
·			North end of buried foundation of
80 to 200	-800 to -740	Linear EM and Magnetics anomaly	former building
			East end of buried foundation of former
200 to 360	-740 to -1040	Linear EM and Magnetics anomaly	building
			South end of buried foundation of
240 to 360	-1100 to -1040	Linear EM and Magnetics anomaly	former building
	10-21 1 11-2		West end of buried foundation of
240 to 80	-1100 to -800	Linear EM and Magnetics anomaly	former building
160 to 520	-600 to -1200	Linear EM and Magnetics anomaly	Fence line
80	-290	Small bull's-eye anomaly on magnetics maps	Metal object observed at surface
100	-170	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
100	-410	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
120_	-200	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
140	-310	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
160	-480	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
180	-110	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
200	-170	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
220	-180	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
220	-240	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface

Easting	Northing		1
(feet)	(feet)	Description	Interpretation
240	-210	Small bull's-eye anomaly on vertical gradient map	Metal object observed at surface
			Suspected small, near-surface, metal
240	-470	Small bull's-eye anomaly on vertical gradient map	object
			Metal object observed at surface,
240	-550	Small bull's-eye anomaly on vertical gradient map	located within capped drainage ditch
300	-50	Small EM and magnetics bull's-eye anomaly	Catch basin with metal grate
			Suspected small, near-surface, metal
300	-480	Small bull's-eye anomaly on vertical gradient map	object
•			Suspected small, near-surface, metal
320	-460	Small bull's-eye anomaly on vertical gradient map	object
			Suspected small, near-surface, metal
320	-500	Small bull's-eye anomaly on vertical gradient map	object
	•		Suspected buried metal object(s),
		Mid-size bull's-eye anomaly on vertical gradient	located within capped drainage
320 to 340	-560 to -580	map	ditch
			Suspected small, near-surface, metal
340	-540	Small bull's-eye anomaly on vertical gradient map	object(s)
			Suspected small, near-surface, metal
360	-500	Small bull's-eye anomaly on vertical gradient map	object(s)
		r.	Suspected small, near-surface, metal
360	-520	Small bull's-eye anomaly on vertical gradient map	object(s)
			Suspected small, near-surface, metal
400	-520	Small bull's-eye anomaly on vertical gradient map	object(s)
380 to 420	-690 to -720	Larger bull's-eye anomaly on magnetics maps	Suspected buried metal object(s)

the first that the fi

Easting	Northing		T
(feet)	(feet)	Description	Interpretation
			Suspected buried metal object(s),
420	-370	Small bull's-eye anomaly on vertical gradient map	located within northern capped area
			Suspected buried metal object(s),
420	-440	Small bull's-eye anomaly on vertical gradient map	located within northern capped area
			Suspected buried metal object(s),
420	-600	Small bull's-eye anomaly on vertical gradient map	located within capped drainage ditch
	ł		Suspected buried metal object(s),
440	-560	Small bull's-eye anomaly on vertical gradient map	located within capped drainage ditch
	İ		Suspected buried metal object(s),
460	-460	Small bull's-eye anomaly on vertical gradient map	located within northern capped area
			Suspected buried metal object(s),
480	-570	Small bull's-eye anomaly on vertical gradient map	located within capped drainage ditch
			Suspected buried metal object(s),
480	-860	Small bull's-eye anomaly on vertical gradient map	located within southern capped area
			Suspected buried metal object(s),
480	-900	Small bull's-eye anomaly on vertical gradient map	located within southern capped area
			Suspected buried metal object(s),
500	-400	Small bull's-eye anomaly on vertical gradient map	located within northern capped area
			Suspected buried metal object(s),
500	-480	Small bull's-eye anomaly on vertical gradient map	located within northern capped area
			Suspected buried metal object(s),
500	-520	Small bull's-eye anomaly on vertical gradient map	located within northern capped area
·			Suspected buried metal object(s),
500	-600	Small bull's-eye anomaly on vertical gradient map	located within capped drainage ditch
			Suspected buried metal object(s),
500	-640	Small bull's-eye anomaly on vertical gradient map	located within capped drainage ditch

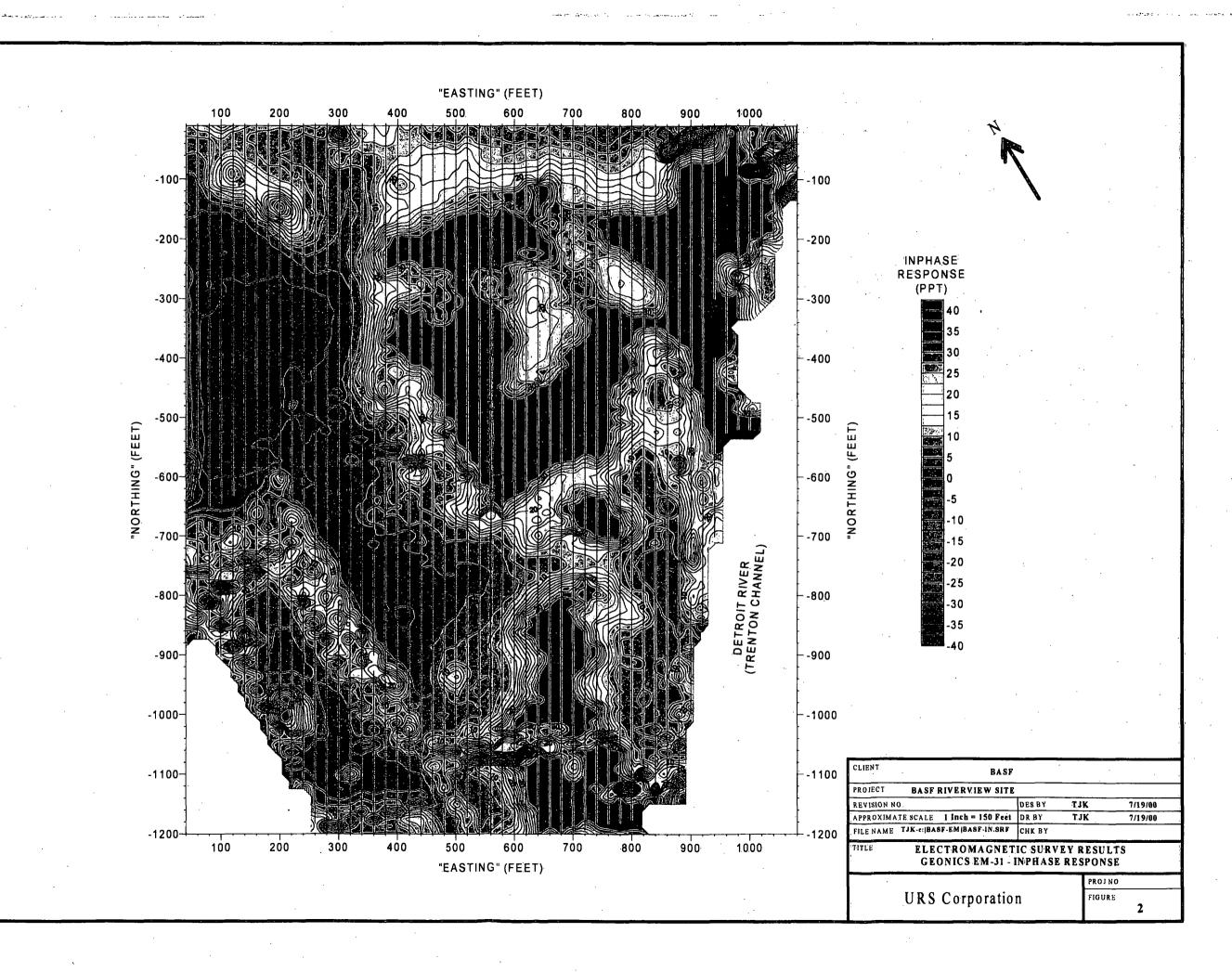
A San Land Hold Bart A Land A

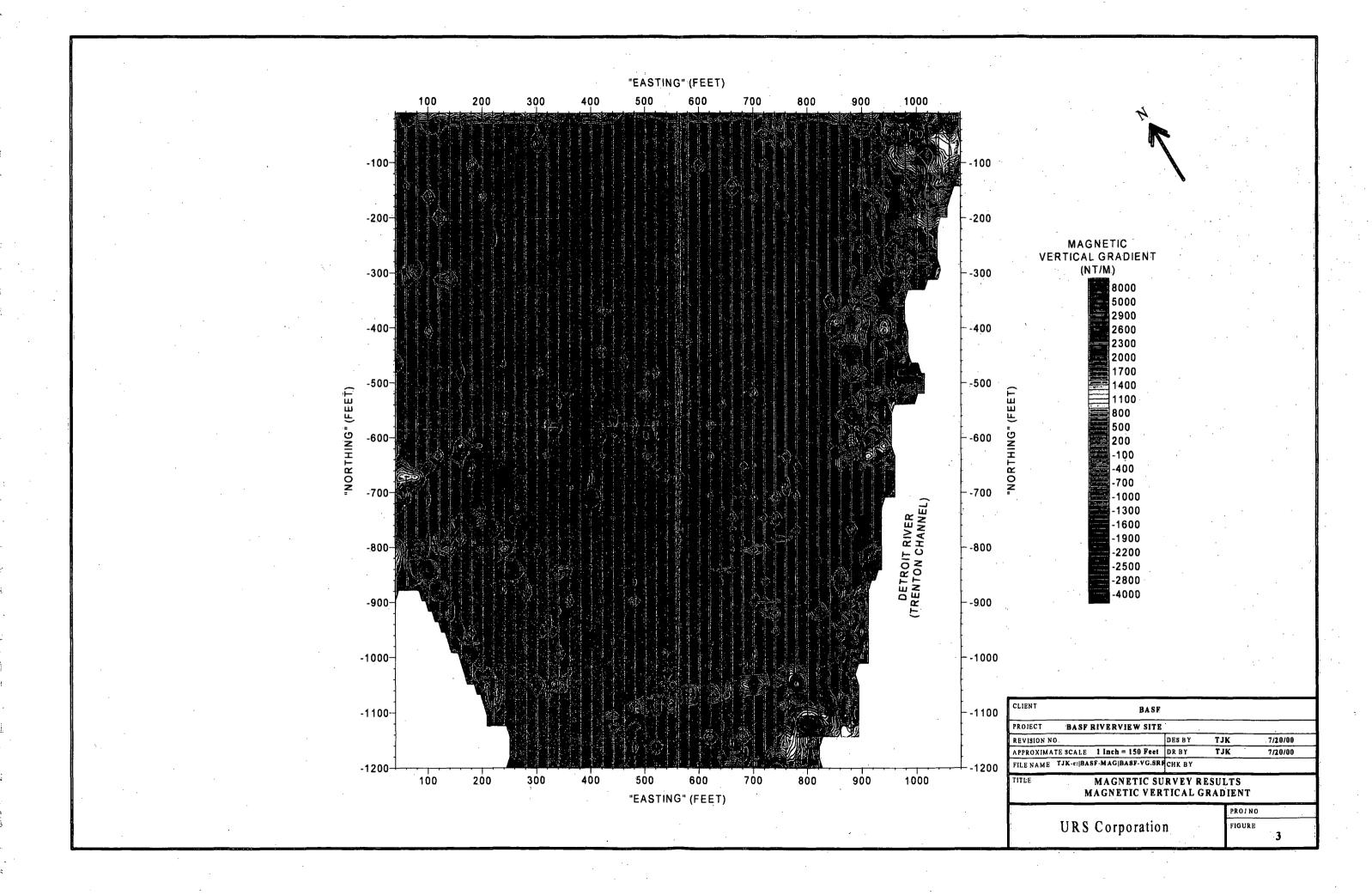

the the tent that the test that the test that the test that

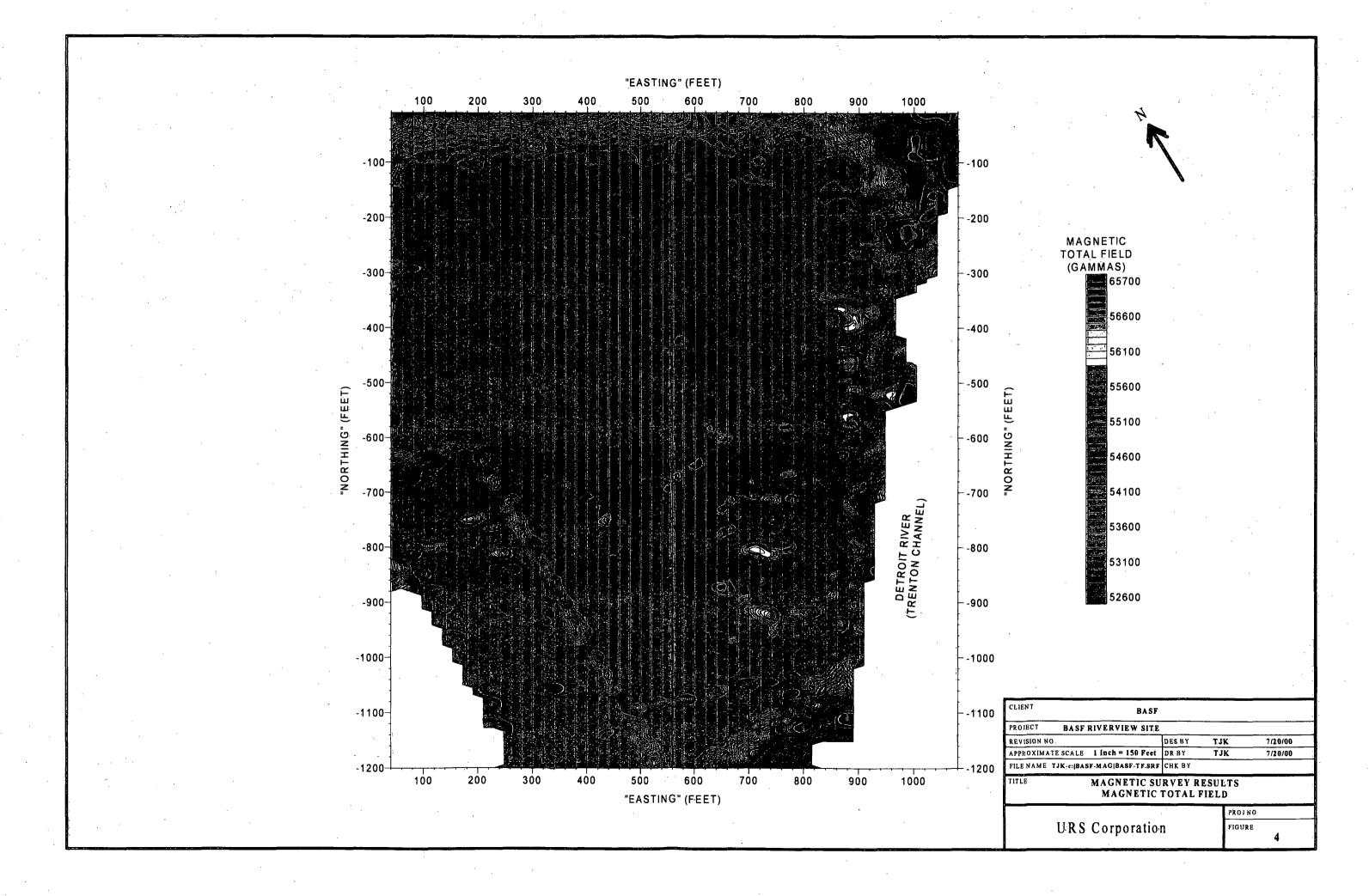
Easting (feet)	Northing (feet)	Description	Interpretation
	(1000)	Description	North end of buried foundation of
500 to 780	-1100 to -1050	Linear EM and Magnetics anomaly	former building
300 10 700	-1100 10 -1000	Linear Ewi and Magnetics anomaly	East end of buried foundation of former
780 to 820	-1050 to -1140	Linear EM and Magnetics anomaly	building
700 10 020	-1000 to -1140	linear Livi and Magnetics anomaly	Suspected buried metal object(s),
520	-340	Small bull's-eye anomaly on vertical gradient map	located within northern capped area
520	-340	oman buils-eye anomaly on vertical gradient map	Suspected buried metal object(s),
520	-490	 Small bull's-eye anomaly on vertical gradient map	located within northern capped area
	1	omail buils-cyc anomaly on vertical gradient map	Suspected buried metal object(s),
520	-550	 Small bull's-eye anomaly on vertical gradient map	located within capped drainage ditch
		ornan band by anomaly on vortion gradient map	Suspected buried metal object(s),
520	-580	Small bull's-eye anomaly on vertical gradient map	located within capped drainage ditch
<u> </u>		The state of a district of total gradient map	Suspected small, near-surface, metal
520	-650	Small bull's-eye anomaly on vertical gradient map	object(s)
- 020		The same of a contact of volume gradient map	Suspected small, near-surface, metal
520	-680	Small bull's-eye anomaly on vertical gradient map	object(s)
		eman gane eye anemany en veraear gradient map	Suspected small, near-surface, metal
540	-540	Small bull's-eye anomaly on vertical gradient map	object(s)
		in a series of a s	Suspected small, near-surface, metal
540	-680	Small bull's-eye anomaly on vertical gradient map	object(s)
	:	γ	Suspected small, near-surface, metal
560	-660	Small bull's-eye anomaly on vertical gradient map	object(s)
			Suspected small, near-surface, metal
560	-800	Small bull's-eye anomaly on vertical gradient map	object(s)
			Suspected buried metal object(s),
580	-430	Small bull's-eye anomaly on vertical gradient map	located within northern capped area

Easting	Northing	{	
(feet)	(feet)	Description	Interpretation
			Suspected buried metal object(s),
580	-480	Small bull's-eye anomaly on vertical gradient map	located within northern capped area
			Suspected buried metal object(s),
580	-540	Small bull's-eye anomaly on vertical gradient map	located within northern capped area
			Suspected buried metal object(s),
580	-580	Small bull's-eye anomaly on vertical gradient map	located within capped drainage ditch
			Suspected small, buried metal
		Group of small bull's-eye anomalies on vertical	object(s), located within northern
600	-60	gradient map	capped area
}			
j	1	Small bull's-eye anomaly on vertical gradient	Suspected buried metal object(s),
600 to 760	-20 to -100	map	located within northern capped area
			Suspected small, buried metal
	}		object(s), located within capped
620	-580	Small bull's-eye anomaly on vertical gradient map	drainage ditch
			Suspected small, buried metal
			object(s), located within capped
620	-640	Small bull's-eye anomaly on vertical gradient map	drainage ditch
			Suspected small, near-surface, metal
620	-700	Small bull's-eye anomaly on vertical gradient map	object(s)
			Suspected small, near-surface, metal
620	-980	Small bul s-eye anomaly on vertical gradient map	object(s)
			Suspected small, near-surface,
•		Group of small bull's-eye anomalies on vertical	metal object(s), located in vicinity of
620 to 700	-1120 to -1200	gradient map	former "rock pile"

THE RESTRICT OF THE PARTY OF TH


Easting	Northing		7
(feet)	(feet)	Description	Interpretation
	:	Group of small bull's-eye anomalies on vertical	·
640 to 780	-640 to -800	gradient map	Suspected buried metal object(s)
1]		Suspected buried metal object(s),
720 to 900	-1200 to -1080	Grouping of EM and Magnetics anomalies	located in vicinity of steel break wall
860	-15	Small bull's-eye anomaly on vertical gradient map	Monitoring well DMW-2
920	-250	Small bull's-eye anomaly on vertical gradient map	Monitoring well DMW-6
			Reinforced concrete lined drainage
900 to 980	-80 to-20	Linear EM and Magnetics anomaly	ditch
		Group of bull's-eye anomalies on magnetics	
840 to 920	-350 to -500	maps	Suspected buried metal object(s)
			Suspected buried metal associated
980 to 1080	-20 to -200	Large EM and magnetics anomalies	with the slurry wall
860	-860	Small bull's-eye anomaly on vertical gradient map	Monitoring well DMW-4
980	-1000	Small bull's-eye anomaly on vertical gradient map	Monitoring wells DMW-1 and SMW-1
			Reinforced concrete lined drainage
900 to 960	-640 -600	Linear EM and Magnetics anomaly	ditch
			Reinforced concrete slabs located
1000	-460 to -500	Large magnetics anomaly	along river shoreline
			Suspected metal objects including
		Grouping of EM and Magnetics anomalies along	reinforced concrete located along river
800 to 1080	-1200 to 0	eastern edge of site	shoreline
	<u></u>	Large EM anomalies characterized by quadrature	
		responses ranging from approximately 180 to	
Site-wide	Site-wide_	greater than 320 milliSiemens per meter	Suspected brine



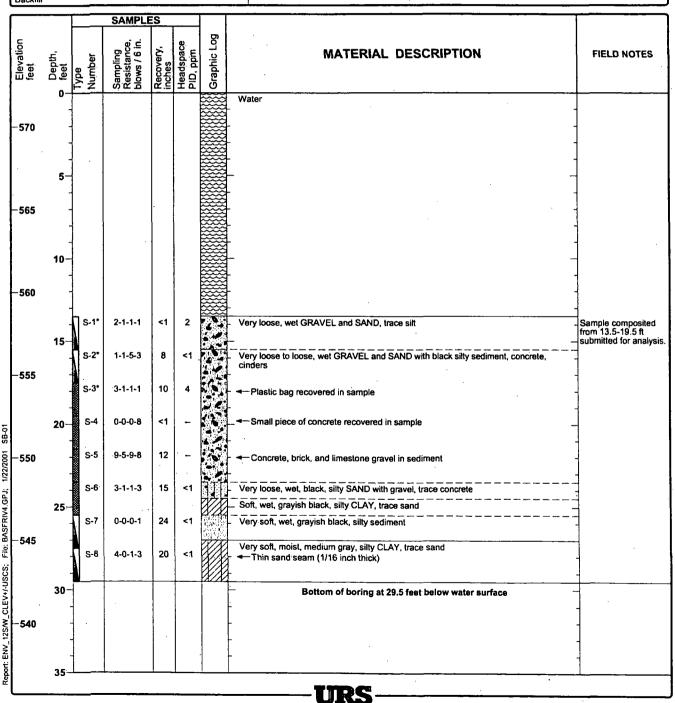

The state of the

in the second

Ēij

fred (m)

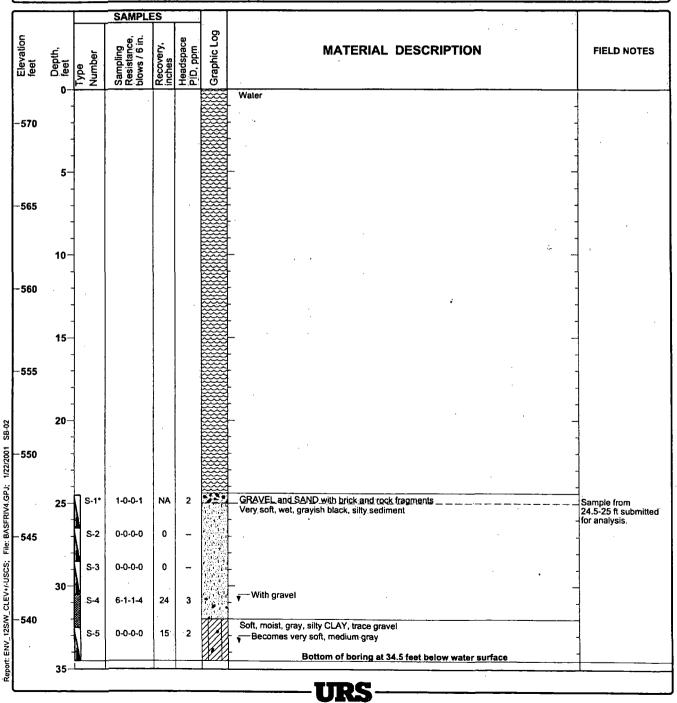
概立


Project: BASF - Riverview Key to Log of Boring Project Location: Riverview, Michigan Sheet 1 of 1 Project Number: 38-08E06216.04 **SAMPLES** Well Completion Schematic 9 **MATERIAL DESCRIPTION FIELD NOTES AND** Graphic WELL DETAILS 11 1 2 9 10 **COLUMN DESCRIPTIONS <u>Elevation</u>**: Elevation in feet referenced to International Great Lakes Datum (I.G.L.D. = NGVD - 1.42 feet). Headspace PID: Photo-ionization detector field sample headspace reading in parts per million (ppm). "NA" indicates data not recorded; "--" indicates no reading due to insufficient sample. Headspace PID: 2 Depth: Depth in feet below the ground surface. Graphic Log: Graphic depiction of subsurface material encountered; typical symbols are explained below. Sample Type; Type of soil sample collected at depth interval shown; sampler symbols are explained below. Material Description: Description of material encountered; may Sample Number: Sample identification number. include color, moisture, grain size, and density/consistency. Sampling Resistance: Number of blows to advance driven 10 Well Completion Schematic: Schematic of piezometer or well-installation; materials are listed alongside well schematic; graphic sampler each 6-inch drive interval, or distance noted, using a 140-lb hammer with a 30-inch drop; "NA" indicates data not recorded. symbols are explained below. Recovery: Length:in inches of sample actually recovered in driven or pushed sampler; "NA" indicates data not recorded. Field Notes and Well Details: Comments and observations regarding drilling or sampling made by driller or field personnel. Well construction materials and installation details are also listed. TYPICAL SOIL GRAPHIC SYMBOLS GRAVEL (GP) SAND (SP) CLAY (CL) SILT (ML) Silty SAND (SM) Plastic CLAY (CH) Clavey SILT (ML) Silty River Sediment Clayey SAND (SC) Silty CLAY (CL/CL-ML) Organic Material Non-Soil Industrial Fill TYPICAL WELL GRAPHIC SYMBOLS TYPICAL SAMPLER GRAPHIC SYMBOLS Blank well casing in 2-inch-OD unlined split Thin-walled tube sampler Galvanized steel outer bentonite chips spoon sampler (SPT) (Shelby tube) Blank well casing in 3-inch-OD split spoon Blank well casing in cement Grab sample sampler (California) Blank well casing in cement Slotted well casing in grout OTHER GRAPHIC SYMBOLS **GENERAL NOTES** Soil classifications are based on the Unified Soil Classification System. First water encountered at time of drilling (ATD) Descriptions and stratum lines are interpretive; actual lithologic changes may be gradual. Field descriptions may have been modified to reflect Static water level measured in well on specified date results of lab tests. Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times. Change in material properties within a stratum Inferred or gradational lithologic contact

URS

Project Location: Riverview, Michigan Project Number: 38-08E06216.04

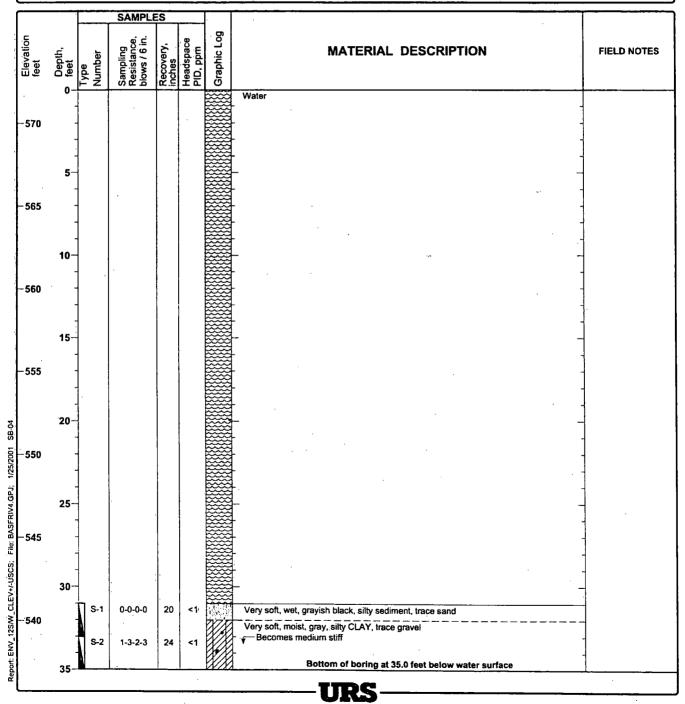
Log of Boring SB-1


Date(s) Drilled	7/26/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	29.5 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD and 3-inch-OD split spoon ("" Indicates lab sample)	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 210.31 E 1103.96
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River; de	epths are measur	ed from water surface.

Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SB-2

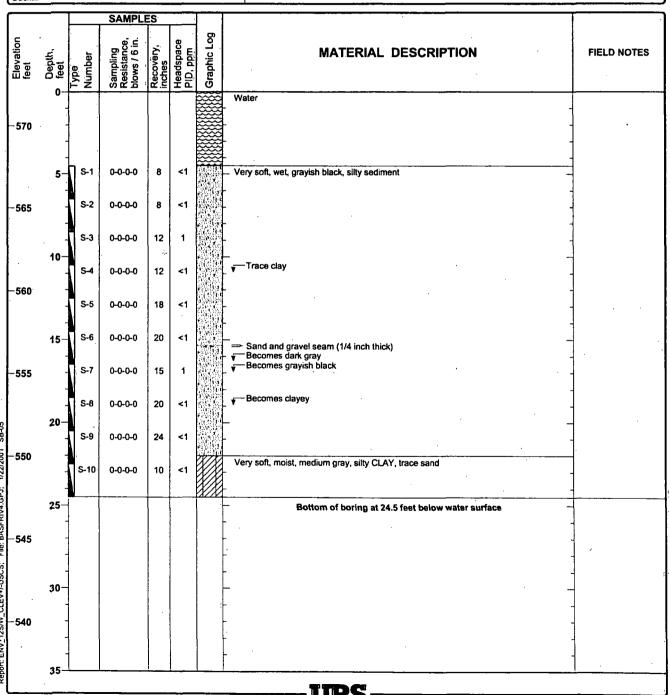
Date(s) Drilled	7/26/00	Logged By	J. Mlelecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	34.5 feet
Drill Rig and Bit	4:25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD and 3-inch-OD split spoon ("" indicates lab sample)	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 191.62 E 1152.69
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River; de	epths are measur	ed from water surface.



Project Location: Riverview, Michigan Project Number:

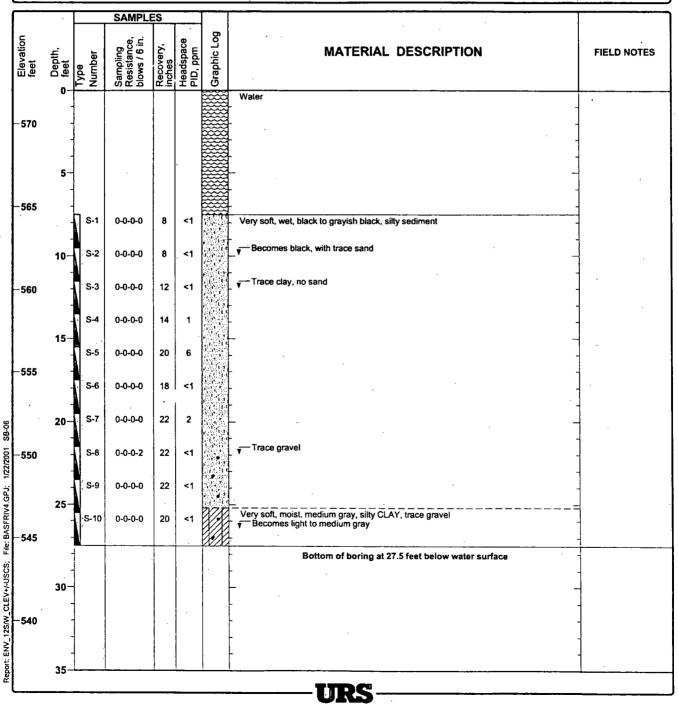
38-08E06216.04

Log of Boring SB-4


Date(s) Drilled	7/27/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	35.0 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 185.12 E 1244.46
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River;	depths are measur	ed from water surface.

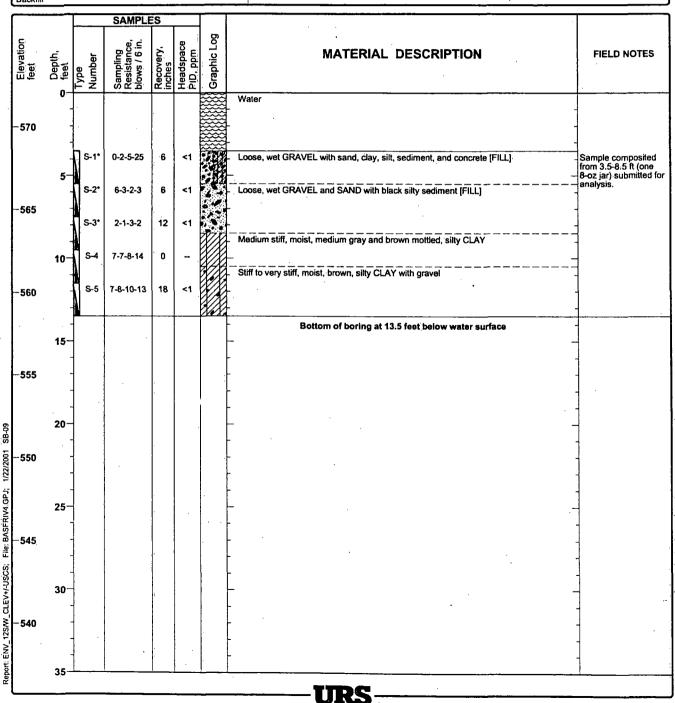
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SB-5


Date(s) Drilled	7/26/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	24.5 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon	River Surface Elevation	572:04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 336.28 E 1020.31
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River	depths are measur	ed from water surface.

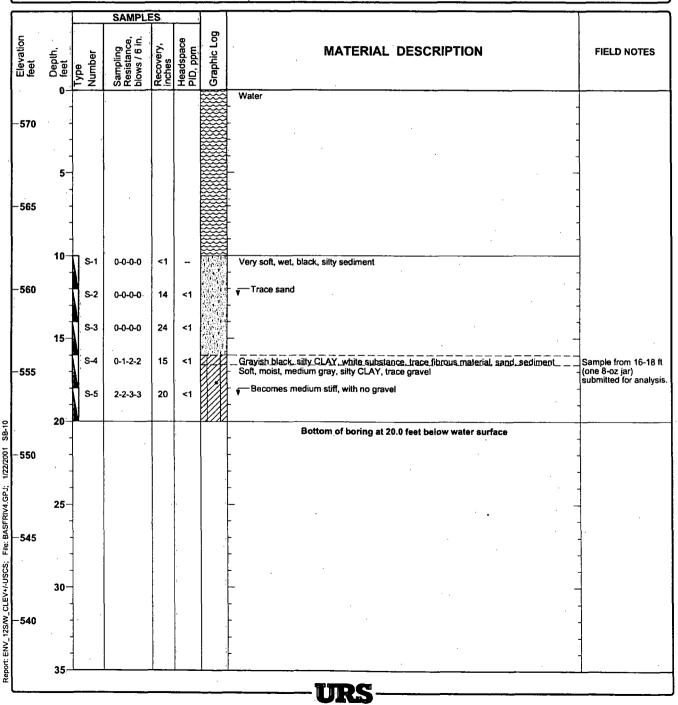
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SB-6


Date(s) Drilled	7/26/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	27.5 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 348.47 E 1066.60
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River;	depths are measur	ed from water surface.

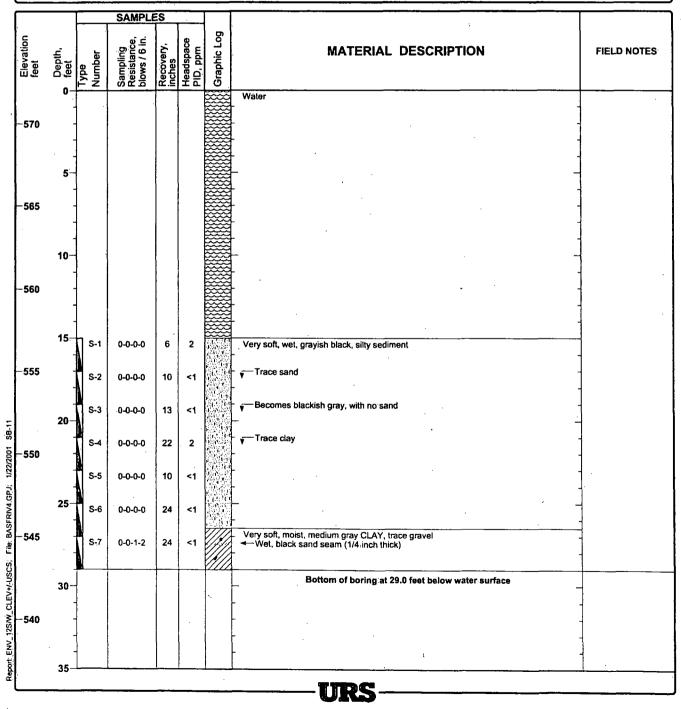
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SB-9


Date(s) Drilled	7/26/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	13.5 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon ("" indicates lab sample)	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 617.08 E 1010.35
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River	depths are measur	ed from water surface.

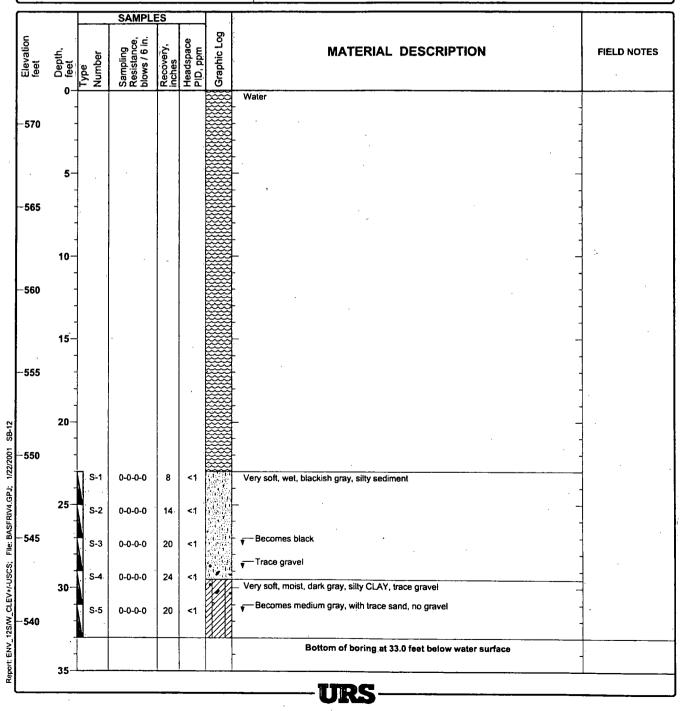
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SB-10


Date(s) Drilled	7/26/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	20.0 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon ("*" Indicates lab sample)	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 528.95 E 1051.77
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River;	depths are measur	ed from water surface.

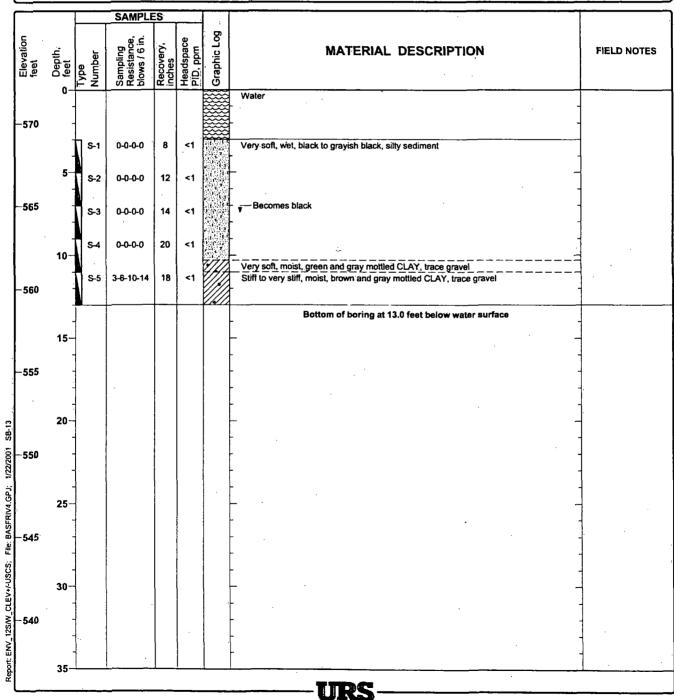
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SB-11


Date(s) Drilled	7/26/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	29.0 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S:574.01 E 1099.69
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River;	depths are measure	ed from water surface.

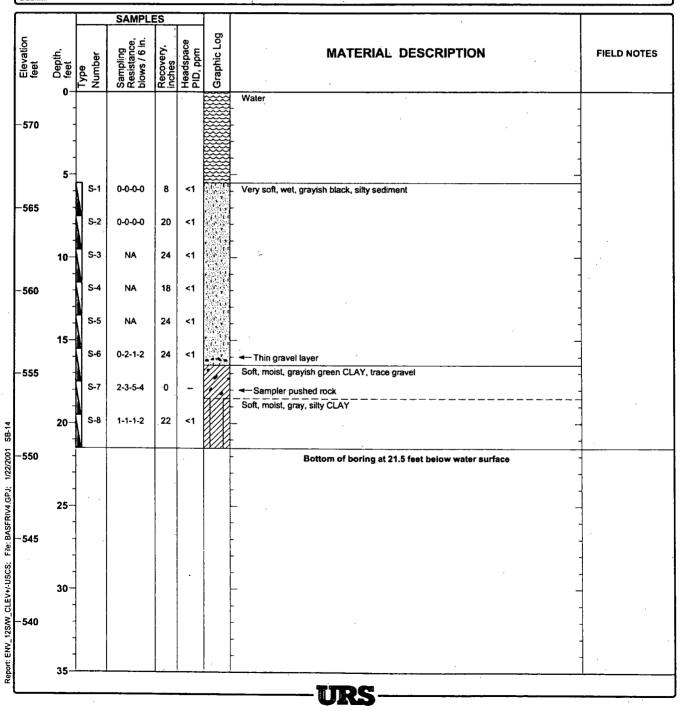
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SB-12


Date(s) Drilled	7/26/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	33.0 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 570.76 E 1149.23
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River	depths are measur	ed from water surface.

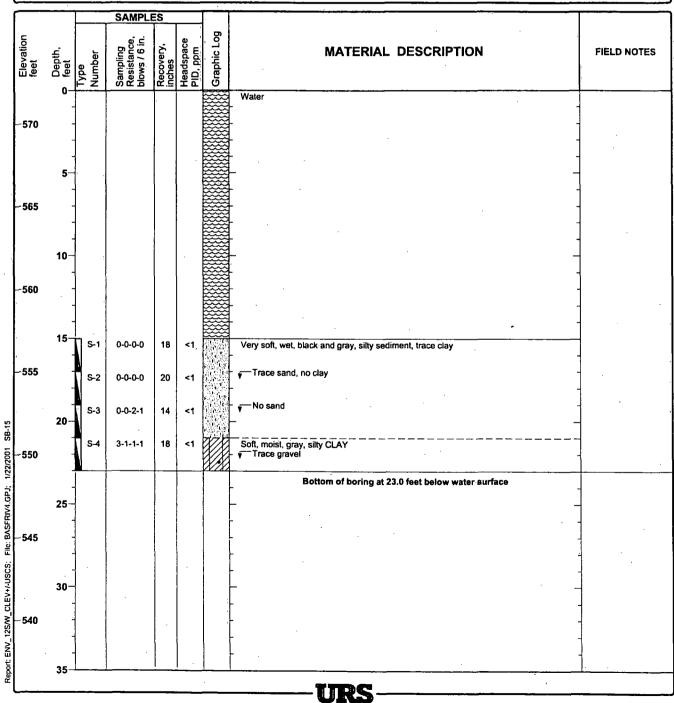
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SB-13


Date(s) Drilled	7/25/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	13.0 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 883.65 E 984.36
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River; depths are measured from water surface.		

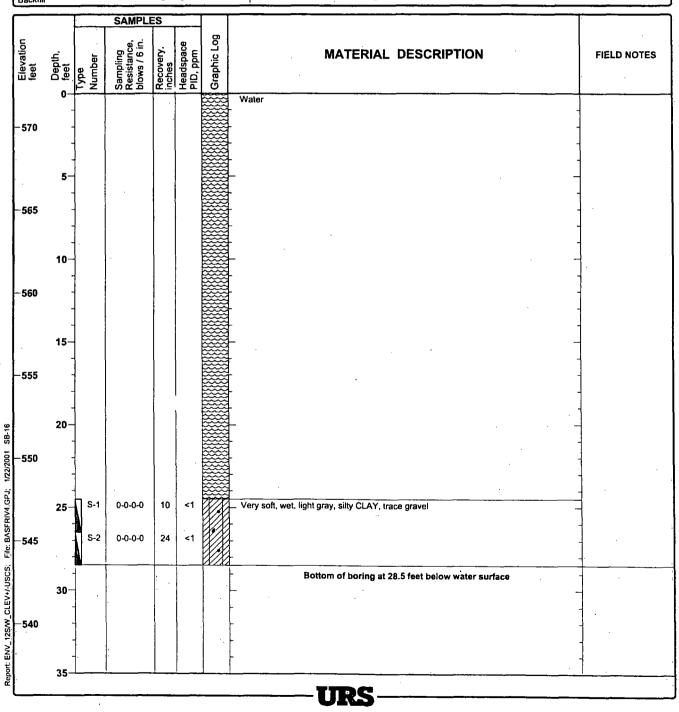
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SB-14


Date(s) Drilled	7/25/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	21.5 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 867.40 E 1029.84
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River; depths are measured from water surface		

Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SB-15


Date(s) Drilled	7/25/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	23.0 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 900.72 E 1069.64
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River;	depths are measur	ed from water surface.

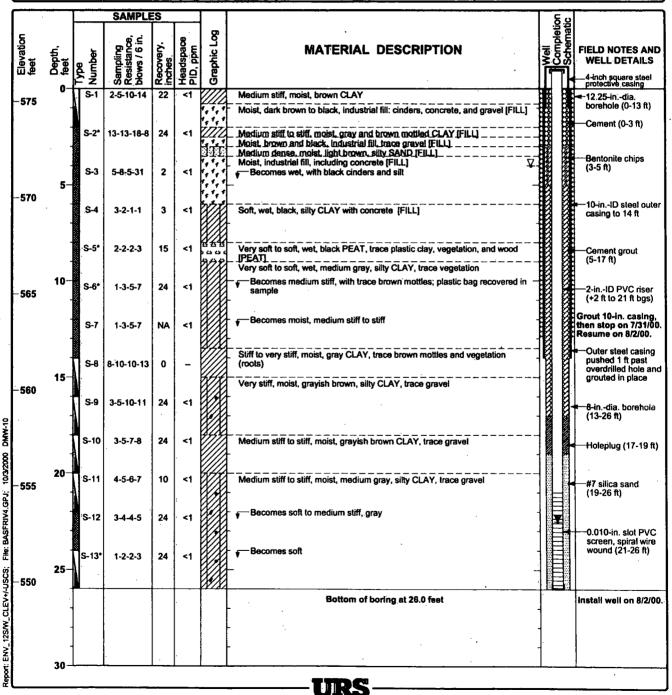
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SB-16

Date(s) Drilled	7/25/00	Logged By	J. Mielecki	Reviewed By	J. Anderson
Drilling Method	Hollow-stem auger (CME 750X)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	28.5 feet
Drill Rig and Bit	4.25-inch-ID / 8-inch-OD auger	Sampling Method	2-inch-OD split spoon	River Surface Elevation	572.04 feet IGLD
Groundwater Level(s)	Not applicable (drilled in river)	Hammer Data	140 lbs / 30-inch drop	Coordinate Location	S 885.28 E 1120.80
Borehole Backfill	Hole collapse during auger removal	Comments	Drilled off barge in Detroit River	; depths are measur	ed from water surface.

Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring DMW-9


Date(s) Drilled 7/27/00 through 8/2/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stern auger (CME 750X, Method 8-In. OD to 26 ft, 12.25-In. OD to 13 ft)	Drilling Contractor	Steams Drilling (B. Grahm)	Total Depth of Borehole	28.0 feet
Sampling 3-inch-OD split spoon Method ("** indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	579.16 feet IGLD
Size and Type of Well Casing 2-inch-ID palvanized steel 0-14-ft;	Screen Perforation	0:010-inch slot (wire wound) 23-28 ft	Surface Elevation	577.07 feet IGLD
Seal or Cement 0-2 ft, bentonite chips 2-5 ft, Backfill cement grout 5-19 ft; holeplug 19-21 ft	Groundwater Level(s)	7.9 feet BGS on 7/28/00 ATD; 7.99 feet BTOC on 9/5/00	Coordinate Location	S 733.17 E 894.80

			SAMPLE	S				E	<u></u>	-
Elevation feet	Depth, feet	Type Number	مأ دخ		Headspace PID, ppm	Graphic Log	MATERIAL DESCRIPTION	Well	Schematic	FIELD NOTES AND WELL DETAILS -4-Inch square steel protective casing
	0-	S-1	9-19-20-17	18	-d	Ť	Very stiff to hard, dry, tan SILT, trace sand and gravel [CAP MATERIAL]			-12.25-india.
575	1	S-2*	9-10-13-12	20	<1		Very stiff to hard, dry, tan to brown SILT with sand, brick, and cinders [FILL] - Light tan brick fragment - Becomes dark gray, with brick, no sand or cinders			borehole (0-13 ft) -Cement (0-2 ft)
	5−	S-3	8-25-50/0°	4	5		_ Moist, white DBO [FILL]	_		-Bentonite chips (2-5 ft)
-570	1	S-4°	8-4-2-2	18	49		Medium stiff, wet, black SILT with cinders, industrial slag, and gravel [FILL]			-10-inID steel outer casing to 14 ft
	4	S-5	2-2-4-2	20	2		Medium stiff, wet, black SILT with organics [PEAT] Soft, molst, dark gray, silty CLAY Soft, molst, dark gray, clayey SILT, trace sand and vegetation			-Cement grout (5-19 ft)
	10-	S-6°	0-0-2-2	24	<1		Very soft, moist, dark gray, silty CLAY, trace vegetation		S	top drilling at 10 ft n 7/27/00. Resume n 7/28/00.
-565	,	S-7	2-5-6-8	24	<1		Stiff, moist, gray CLAY, trace silt and gravel Becomes brown and gray mottled			-2-inID PVC riser (+2 ft to 23 ft bgs)
	` 15	S-8	2-4-9-12	8	<1		Medium stiff to stiff, moist, gray and brown mottled, silty CLAY, trace gravel			Outer steel casing pushed 1 ft past overdrilled hole and grouted in place irout 10-in. casing,
-560	7	S-9	6-16-25-30	22	-1		Secomes very stiff, brown		F	hen stop on 7/28/00. lesume on 8/2/00. -8-in:-dia. borehole
	-	S-10	8-15-25-28	24	<1		Becomes hard, brown with trace gray mottles			(13-28 ft)
	20-	S-11	4-7-12-16	24	<1		Becomes medium stiff to stiff, gray and brown mottled			-Holeplug (19-21 ft)
-555		S-12	2-4-5- 6	24	<1		Stiff, moist, gray CLAY Becomes medium stiff, brown	38384383		#7 silica sand (21-28 ft)
	25-	S-13	2-4-6-8	8			Medium stiff, moist, gray, silty CLAY, plastic, trace gravel Medium stiff, moist, gray CLAY, trace gravel			-0.010-in. slot PVC screen, spiral wire
-550	43	S-14*	0-2-3-4	24	<1		Very soft to soft, moist, gray, silty CLAY, trace gravel			wound (23-28 ft)
	_					* * / A/	Bottom of boring at 28.0 feet		1	nstall well on 8/2/00.
	30-						URS-	<u>—</u>		

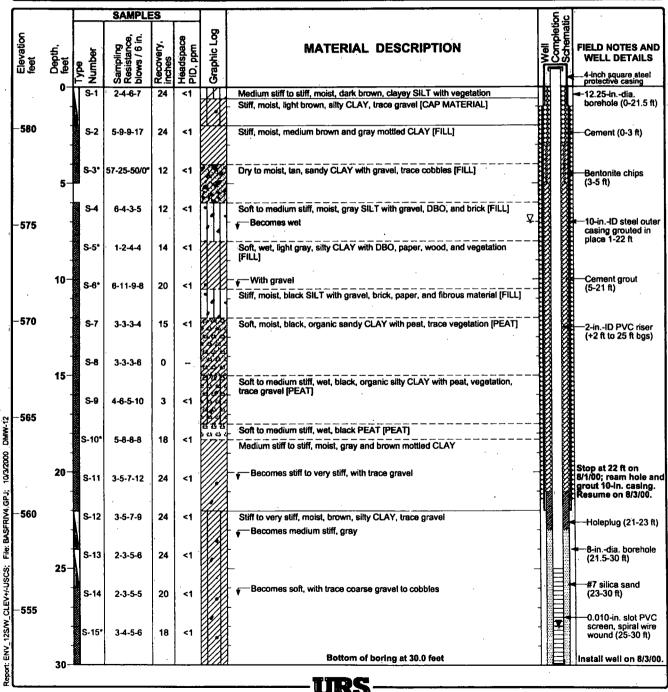
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring DMW-10

Date(s) Drilled 7/31/00 through 8/2/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 8-in. OD to 26 ft, 12:25-in. OD to 13 ft)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	26.0 feet
Sampling 2-Inch-OD and 3-inch-OD split spoon Method ("" indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	577.66 feet IGLD
Size and Type 10-inch-ID galvanized steel 0-14 ft; of Well Casing 2-inch-ID PVC +2 ft to 21 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 21-26 ft	Surface Elevation	575.67 feet IGLD
Seal or Cement 0-3 ft, bentonite chips 3-5 ft, Backfill cement grout 5-17 ft; holeplug 17-19 ft	Groundwater Level(s)	4 feet BGS on 7/31/00 ATD; 24.50 feet BTOC on 9/5/00	Coordinate Location	S 388.76 E 923.12

Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring DMW-11


Date(s) Drilled and Installed 7/28/00 the	ough 8/3/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem a Method 8-In. OD to 26	uger (CME 750X, ft, 12.25-in. OD to 11 ft)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	26.0 feet
Sampling 2-Inch-OD and Method ("Indicates	3-inch-OD split spoon lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	577.62 feet IGLD
Size and Type 10-Inch-ID of Well Casing 2-Inch-ID	galvanized steel 0-12 ft; PVC +2 ft to 21 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 21-26 ft	Surface Elevation	575.77 feet IGLD
	bentonite chips 3-5 ft, 5-17 ft; holeplug 17-19 ft	Groundwater Level(s)	12 feet BGS on 8/2/00 ATD; 25.04 feet BTOC on 9/5/00	Coordinate Location	S 57.27 E 945.66

Backill			grout 5-17 f	t, iivi	apiug	17-10 10	Level(s) 25.04 feet BTOC on 9/5/00	Location		
			SAMPLE	S]	5.9	
Elevation	Depth, feet	Type Number	Sampling Resistance, blows / 6 in.	Recovery, inches	Headspace PID, ppm	Graphic Log	MATERIAL DESCRIPTION		Well Completion Schematic	FIELD NOTES AND WELL DETAILS 4-inch square steel protective casing
-575	0-	Ş-1	11-27-50/2*	14	<1		Very stiff to hard, dry, tan, sitty CLAY with sand, gravel, and slavegetation	g; surficial		12.25-india. borehole (0-11 ft)
ļ ·	-	S-2	3-6-6-5	24	<1	<i>322</i> 4_	Moist, white DBO [FILL]			Cement (0-3 ft) Bentonite chips
	5-	s-3 •	5-9-11-6	20	<1		Medium dense, moist, black GRAVEL with sand, cinders, and	industrial fill —		(3-5 ft) Stop drilling at 4 ft on 7/28/00. Resume on 7/31/00.
-570	-	s-4°	3-4-5-4	10	<1	4444 4444	[FILL] Soft to medium stiff, moist, black, silty PEAT with wood, trace g vegetation (roots) [PEAT]			10-inID steel outer casing to 12 ft
		S-5	1-1-1-3	18	1		Very soft, moist, gray CLAY, plastic, with vegetation (roots)			Cement grout (5-17 ft) —2-inID PVC riser
-565	10-	S-6	2-3-4-5	24	<1		Soft to medium stiff, moist, gray, silty CLAY, high plasticity, will vegetation (roots)	h		(+2 ft to 21 ft bgs) Grout 10-in. casing, then stop on 7/31/00.
	-	S-7	12-14-14-13	12	<1	777	Medium dense, wet, black SAND Very stiff, moist, grayish brown CLAY, trace gravel			Resume on 8/2/00. Outer steel casing pushed 1 ft past overdrilled hole and grouted in place
	15-	S-8	4-7-8-11	18	<1		€—Becomes stiff to very stiff, gray and brown mottled			8-india. borehole
-560	-	S-9	3-7-9-11	24	<1		Very stiff, mci-t, gray, silty CLAY, trace gravel		TOTAL STREET	(11-26 ft)
	-	S-10	2-5-7-9	20	<1		Becomes stiff	- -		Holeplug (17-19 ft) Stop drilling at 18 ft on 8/2/00. Resume
-555	20-	S-1:1	5-6-9-8	o	-		ç [—] No gravel	-		on 8/3/00. —#7 silica sand (19-26 ft)
	-	S-12	2-4-4-4	8	<1		√ —Becomes medium stiff, with trace gravel	-		0.010-in. slot PVC
555 550	25-	S-13	2-2-4-6	20	<1		Becomes soft	-		screen, spiral wire wound (21-26 ft)
-550							Bottom of boring at 26.0 feet			Install well on 8/3/00.
						ļ. 		-		
	30-		<u> </u>		<u>. </u>					
<u> </u>							URS			

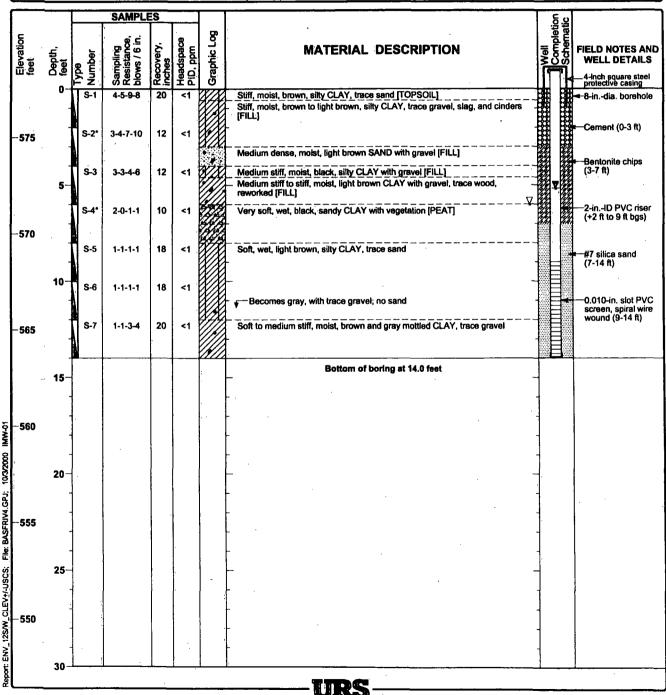
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring DMW-12

Date(s) Drilled and installed 8/1/00 through 8/3/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, 8-in. OD to 30 ft, 12.25-in. OD to 21.5 ft)	Drilling Contractor	Steams Drilling (B. Grahm)	Total Depth of Borehole	30.0 feet
Sampling 2-inch-OD and 3-inch-OD split spoon ("*" indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	584.06 feet IGLD
Size and Type 10-inch-ID galvanized steel 1-22 ft; of Well Casing 2-inch-ID PVC +2 ft to 25 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 25-30 ft	Surface Elevation	582.17 feet IGLD
Seal or Cement 0-3 ft, bentonite chips 3-5 ft, Backfill cement grout 5-21 ft; holeplug 21-23 ft	Groundwater Level(s)	7 feet BGS on 8/1/00 ATD; 29.88 feet BTOC on 9/5/00	Coordinate Location	S 883.85 E 688.11

Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

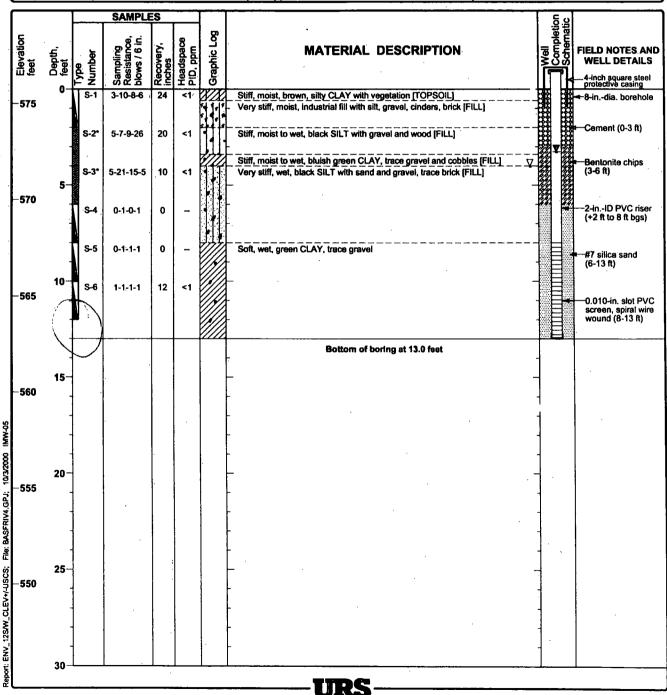
Log of Boring DMW-13


Date(s) Drilled and installed 8/1/00 through 8/3/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 8-in. OD to 28 ft, 12.25-in. OD to 18 ft)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	28.0 feet
Sampling 2-inch-OD and 3-inch-OD split spoon Method ("** Indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	583.08 feet IGLD
Size and Type 10-inch-ID galvanized steel 0-18 ft; of Well Casing 2-inch-ID PVC +2 ft to 23 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 23-28 ft	Surface Elevation	581.17 feet IGLD
Seal or Cement 0-3 ft, bentonite chips 3-5 ft, Backfill cement grout 5-19 ft; holeplug 19-21 ft	Groundwater Level(s)	8 feet BGS on 8/1/00 ATD; 23.83 feet BTOC on 9/5/00	Coordinate Location	S 263.27 E 623.95

			SAMPLE	S				\neg	5 0	3
Elevation feet	Depth, feet	Type Number	Sampling Resistance, blows / 6 in.	Recovery, inches	Headspace PID, ppm	Graphic Log	MATERIAL DESCRIPTION	Well	Completion	FIELD NOTES AND WELL DETAILS 4-inch square steel protective casing
-580	0-	S-1	2-4-10-10	22	<1	-	Medium stiff, moist, dark brown SILT [CAP MATERIAL] ▼ Becomes stiff, brown, with trace clay and gravel		******	12.25-india. borehole (0-18 ft)
	-	S-2	.8-13-13-12.	20	<1		Very stiff, moist, medium brown, clayey SILT, trace gravel and roots [CAP MATERIAL]			Cement (0-3 ft)
	5-	S-3°	8-13-14-30	- 24	<1		Brown, with cinders, glass, brick, and other fill material Very stiff, moist, medium brown, sitty CLAY [CAP MATERIAL] Very stiff, moist, dark brown CLAY, trace gravel, brick, and concrete [FILL]	!		Bentonite chips (3-5 ft)
-575	-	S-4°	8-7-7-11	18	<1		Medium stiff to stiff, moist to wet, dark brown to black, silty CLAY with cinders and fill material, trace gravel and DBO [FILL]			10-inID steel oute
	-	S-5	12-7-3-5	0	-		- Fecomes wet	₹.		casing to 14 ft grouted in place
-570	10÷	S-6°	12-7-5-9	12	<1		Stiff, wet, black SILT with wood [FILL]	13		Cement grout (5-19 ft)
	-	S-7	9-7-6-5 ·	1	<1		Loose, wet, black and gray, silty SAND with clay, trace vegetation [PEAT] Stiff, wet, black SILT with wood and vegetation [PEAT]	 		2-inID PVC riser (+2 ft to 23 ft bgs)
	15-	S-8	9-4-4-6	18	<1		Medium stiff, moist, gray, silty CLAY, little root material, trace gravel and brown mottles	1		
565		S-9	5-5-7-10	<1	<1		— With wood			Stop at 20 ft on 8/1/00; ream hole ar grout 10-in. casing.
	-	S-10	6-12-20-34	24	<1		Very stiff, moist, brown and gray mottled CLAY, trace gravel	_		grout 10-in. casing. Resume on 8/3/00.
-560	20-	S-11	3-8-13-16	24	<1		Very stiff, moist, brown to brownish gray, silly CLAY with gravel			Holeplug (19-21 ft
300	1	S-12	3-6-9-7	24	<1		Stiff, moist, gray, silty CLAY, trace gravel		¥	(18-28 ft)
	_ 25−	S-13	1-2-3-5	20	<1		- ⊕-Becomes soft to medium stiff			#7 silica sand (21-28 ft)
-555	 -	S-14*	0-0-3-3	24	<1		- G ── Becomes very soft to soft			0.010-in. slot PVC screen, spiral wire wound (23-28 ft)
•	_					25/2/2	Bottom of boring at 28.0 feet			Install well on 8/3/0
	30-			<u> </u>	<u> </u>	<u>L</u>	URS			<u>.L_</u> .

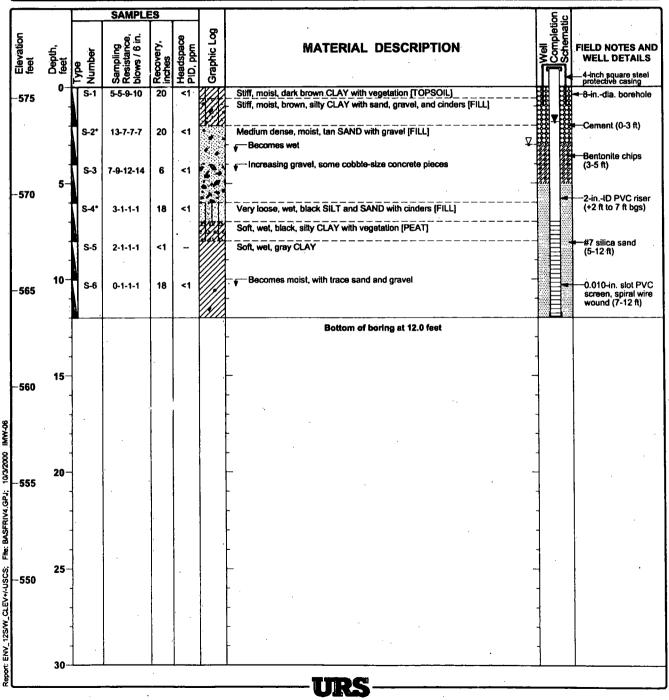
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring IMW-1


Date(s) Drilled and Installed 8/7/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4:25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	14.0 feet
Sampling 2-Inch-OD split spoon Method ("" Indicates lab sample)	Hammer Data	140 lbs:// 30-Inch drop	Top of Casing Elevation	579.62 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 9 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 9-14 ft	Surface Elevation	577.57 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-7 ft	Groundwater Level(s)	6 feet BGS during drilling; 7.22 feet BTOC on 9/5/00	Coordinate Location	S 1127.77 E 849.56

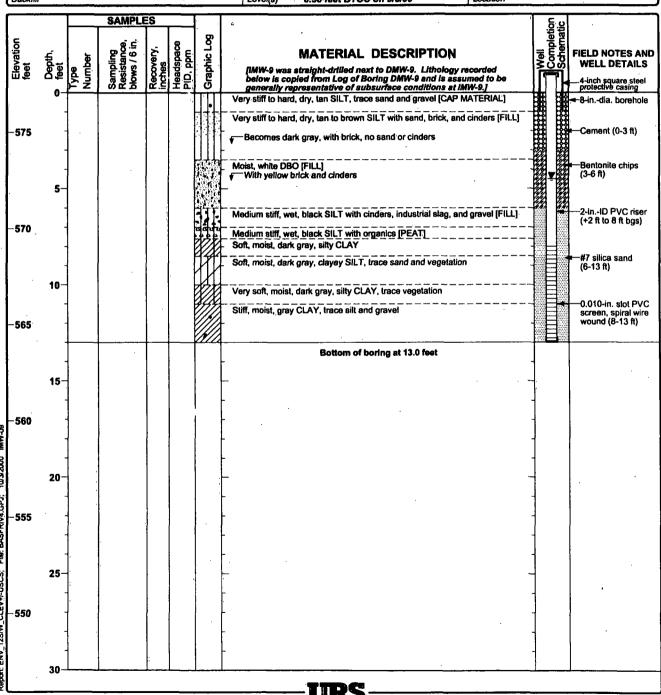
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring IMW-5


Date(s) Drilled 8/8/00 and Installed	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4:25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	13.0 feet
Sampling 2-inch-OD and 3-inch-OD split spoon Method ("" Indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	577.79 feet IGLD
Size and Type of Well-Casing 2-Inch-ID PVC +2 ft to 8 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 8-13 ft	Surface Elevation	575.77 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-6 ft	Groundwater Level(s)	4 feet BGS during drilling; 5.28 feet BTOC on 9/5/00	Coordinate Location	S 509.18 E 914.96

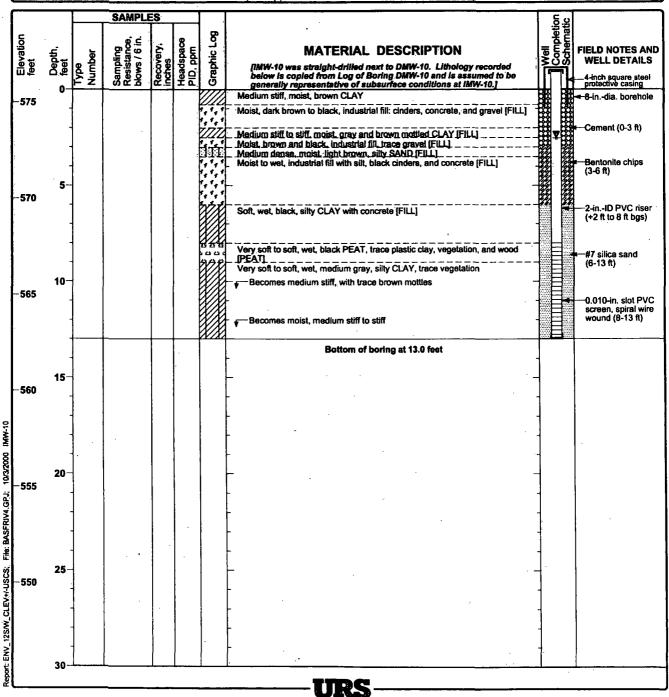
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring IMW-6


Date(s) Drilled 8/8/00 and Installed	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4:25-inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	12.0 feet
Sampling 2-inch-OD split spoon Method (*** Indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	577.50 feet IGLD
Size and Type of Well Casing 2-inch-ID PVC +2 ft to 7 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 7-12 ft	Surface Elevation	575.57 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-5 ft	Groundwater Level(s)	3 feet BGS during drilling; 3.75 feet BTOC on 9/5/00	Coordinate Location	S 252.18 E 938.87

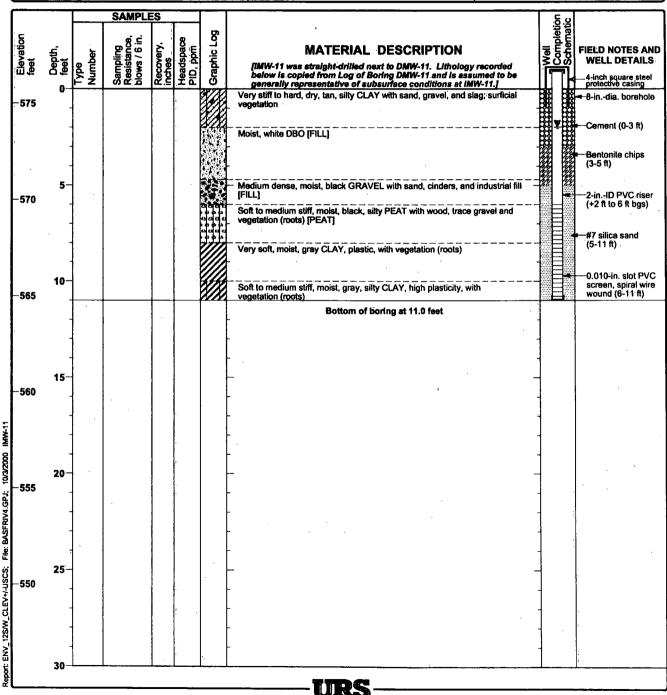
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring IMW-9


Date(s) Drilled and Installed 8/2/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem:auger (CME 750X, Method 4.25-inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	13.0 feet
Sampling Method No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	579.12 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 8 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 8-13 ft	Surface Elevation	577.07 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-6 ft	Groundwater Level(s)	Not measured during drilling; 6.56 feet BTOC on 9/5/00	Coordinate Location	S 725.90 E 896.07

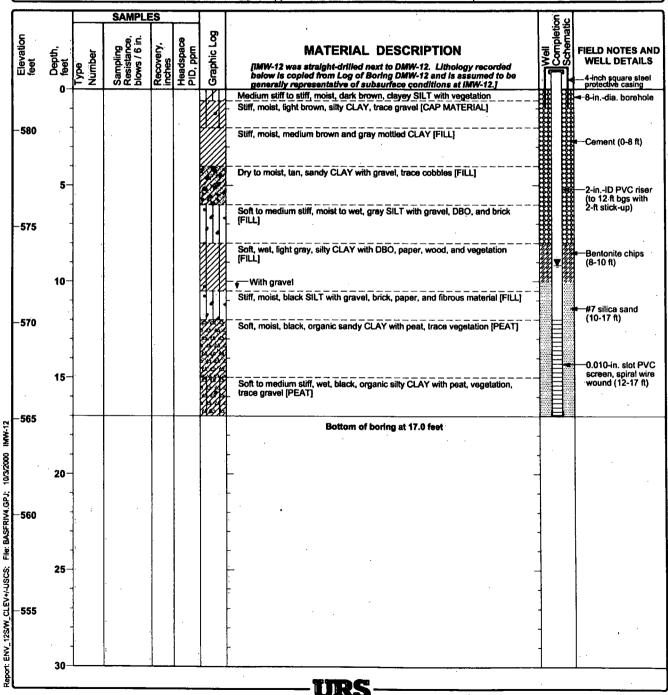
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring IMW-10


Date(s):Drilled and installed 8/2/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	13.0 feet
Sampling No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	577.70 feet IGLD
Size and Type of Well Casing 2-inch-ID PVC +2 ft to 8 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 8-13 ft	Surface Elevation	575.67 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-6 ft	Groundwater Level(s)	Not measured during drilling; 4.56 feet BTOC on 9/5/00	Coordinate Location	S 383.72 E 923.44

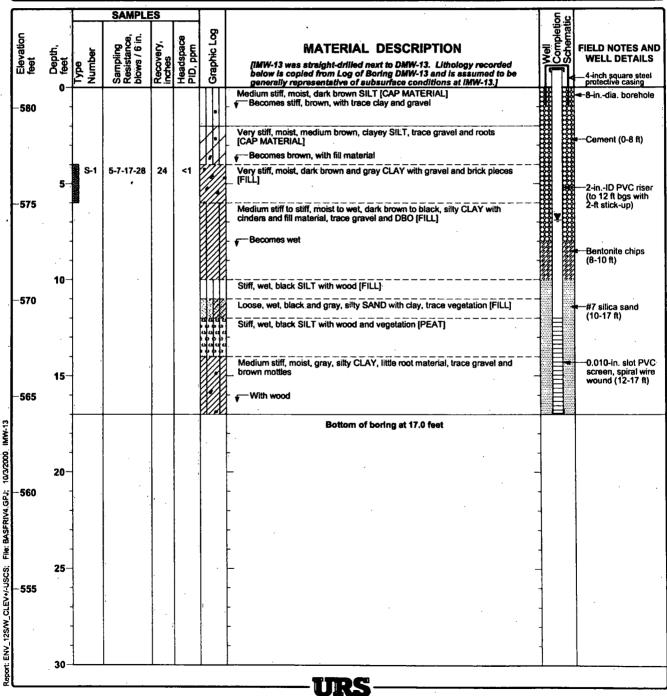
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring IMW-11


Date(s) Drilled and Installed 8/3/00	Geologist	J. Mielecki	Reviewer.	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	11.0 feet
Sampling Method No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	577.69 feet IGLD
Size and Type of Well Casing 2-inch-ID PVC +2 ft to 6 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 6-11 ft	Surface Elevation	575.77 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-5 ft	Groundwater Level(s)	Not measured during drilling; 3.90 feet BTOC on 9/5/00	Coordinate Location	S 53:06 E 946.15

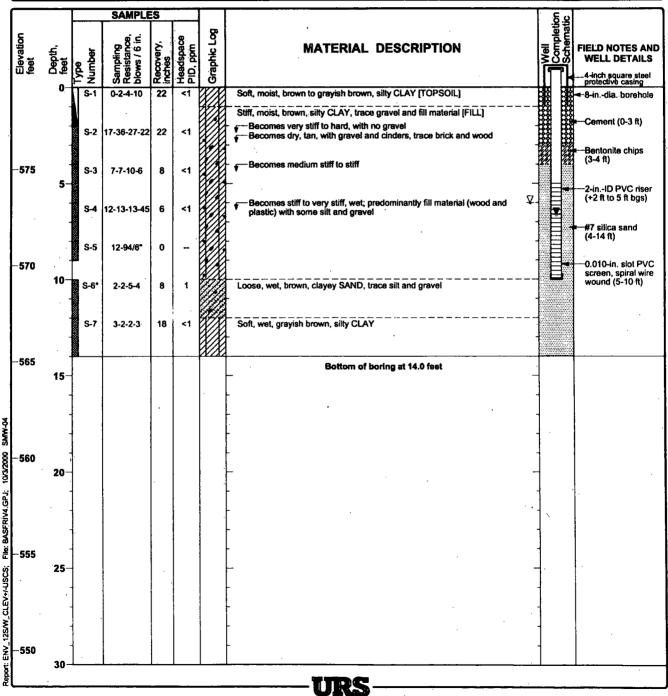
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring IMW-12


Date(s) Drilled and Installed 8/3/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	17.0 feet
Sampling No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	584.16 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 12 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 12-17 ft	Surface Elevation	582.17 feet IGLD
Seal or Backfill Cement 0-8 ft, bentonite chips 8-10 ft	Groundwater Level(s)	Not measured during drilling; 11.15 feet BTOC on 9/5/00	Coordinate Location	S-889.82 E 688.60

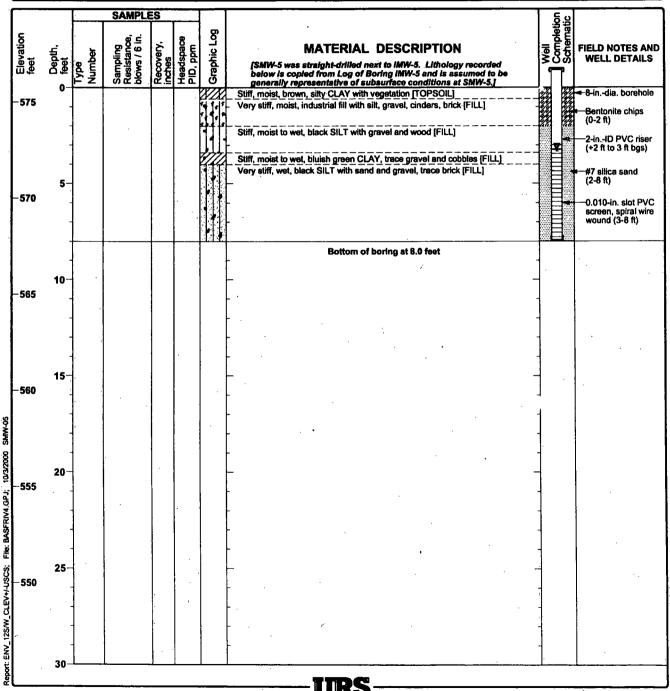
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring IMW-13


Date(s) Dritted and Installed 8/3/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Steams Drilling (B. Grahm)	Total Depth of Borehole	17.0 feet
Sampling 3-Inch-OD split spoon	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	583.09 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 12 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 12-17 ft	Surface Elevation	581.07 feet IGLD
Seal or Backfill Cement 0-8 ft, bentonite chips 8-10 ft	Groundwater Level(s)	Not measured during drilling; 8.94 feet BTOC on 9/5/00	Coordinate Location	S 258.67 E 624.14

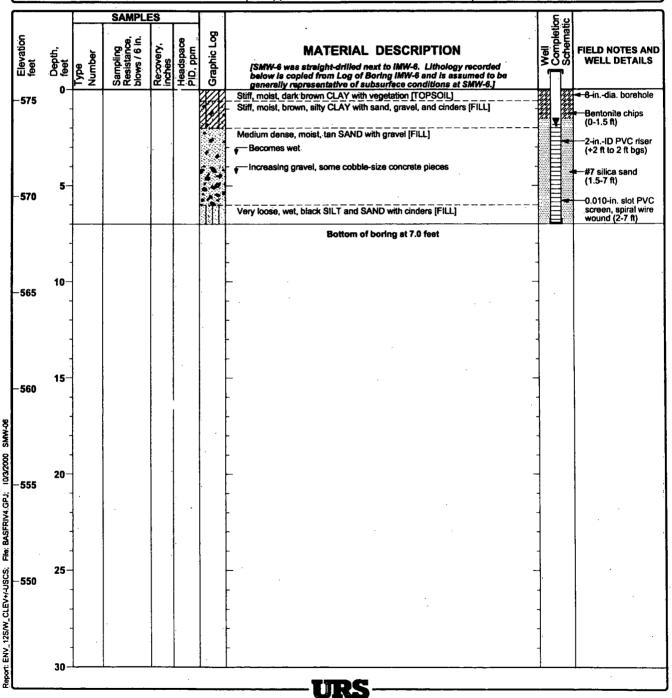
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-4


Date(s) Drilled and installed 8/4/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stern auger (CME 750X, Method 4.25-Inch-ID / 8-Inch-OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	14.0 feet
Sampling 2-inch-OD and 3-inch-OD split spoon (*** indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	581.41 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 5 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 5-10 ft	Surface Elevation	579.27 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-4 ft	Groundwater Level(s)	6 feet BGS during drilling; 8.77 feet BTOC on 9/5/00	Coordinate Location	8 850.37 E 864.95

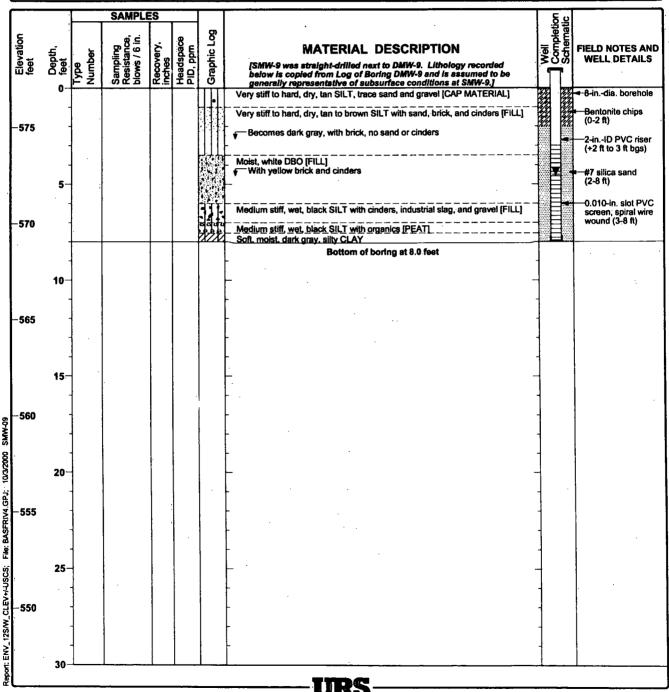
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SMW-5


Date(s) Drilled and Installed 8/8/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stern auger (CME 750X, Method 4.25-inch-ID / 8-inch OD auger)	Drilling Contractor	Steams Drilling (B. Grahm)	Total Depth of Borehole	8.0 feet
Sampling No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	577.85 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 3 ft bgs	Screen Perforation	6.010-inch slot (wire wound) 3-8 ft	Surface Elevation	575.77 feet IGLD
Seal or Backfill Bentonite chips 0-2 ft	Groundwater Level(s)	Not measured during drilling; 5.35 feet BTOC on 9/5/00	Coordinate Location	S 503.50 E 914.47

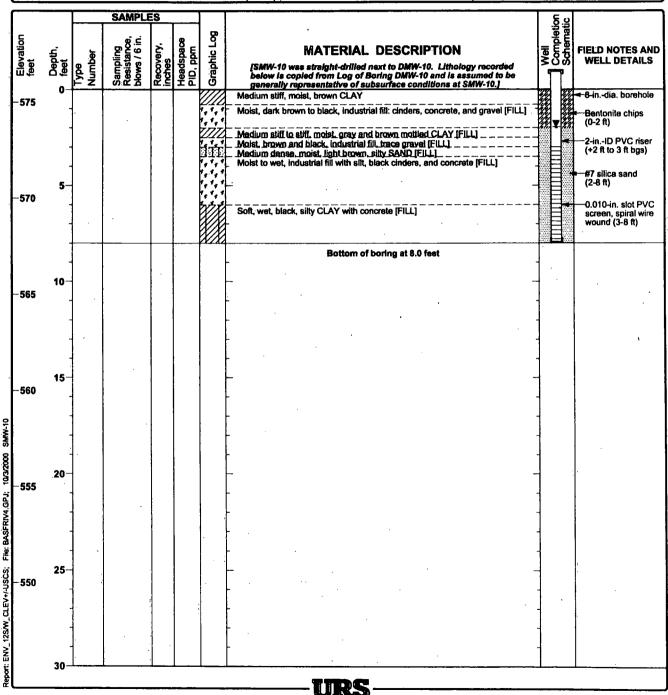
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-6


Date(s) Drilled and Installed 8/8/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stern auger (CME 750X, Method 4.25-Inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	7.0 feet
Sampling No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	577.75 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 2 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 2-7 ft	Surface Elevation	575.57 feet IGLD
Seal or Backfill Bentonite chips 0-1.5 ft	Groundwater Level(s)	Not measured during drilling; 4.02 feet BTOC on 9/5/00	Coordinate Location	S 246.46 E:938.69

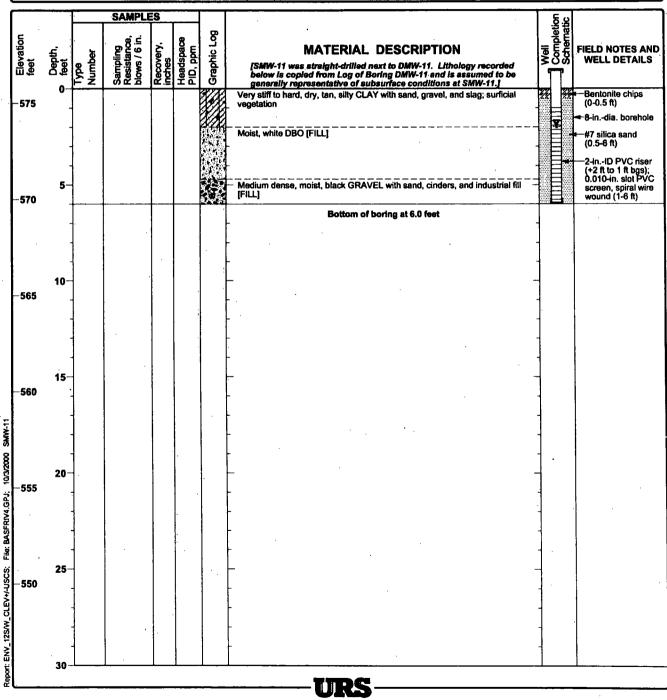
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-9


Date(s) Drilled and Installed 8/4/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	8.0 feet
Sampling No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	579.26 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	577.07 feet IGLD
Seal or Bentonite chips 0-2 ft	Groundwater Level(s)	Not measured during drilling; 6.70 feet BTOC on 9/5/00	Coordinate Location	S 719.97 E 896.49

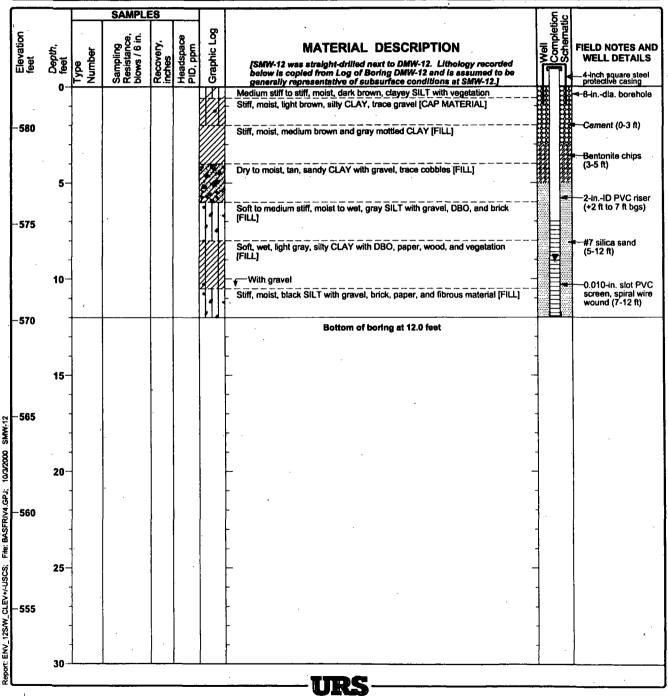
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-10


Date(s) Drilled and Installed 8/4/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	8.0 feet
Sampling No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	577.81 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	575.67 feet IGLD
Seal or Backfill Bentonite chips 0-2 ft	Groundwater Level(s)	Not measured during drilling; 4.10 feet BTOC on 9/5/00	Coordinate Location	8 377.16 E 923.30

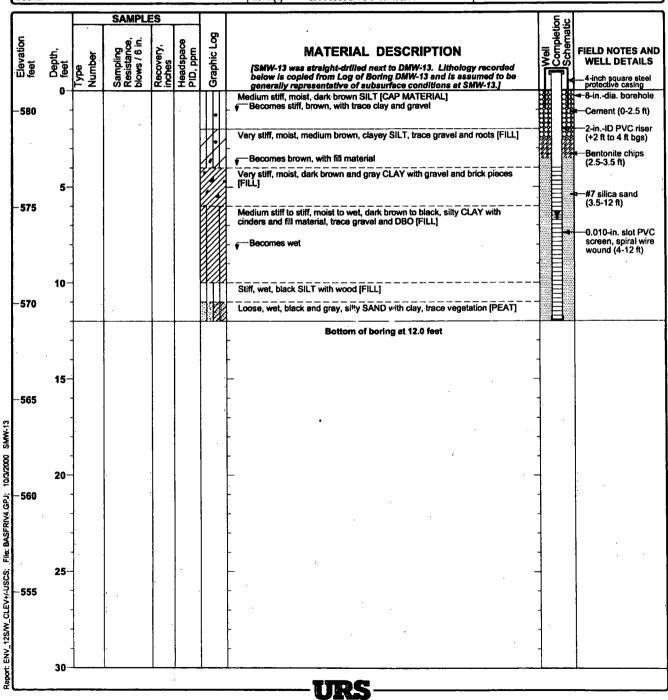
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SMW-11


Date(s) Drilled and installed 8/4/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stern auger (CME 750X, Method 4,25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	6.0 feet
Sampling No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	577.70 feet IGLD
Size and Type of Well Casing 2-inch-ID PVC +2 ft to 1 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 1-6 ft	Surface Elevation	575.77 feet IGLD
Seal or Backfill Bentonite chips 0-0.5 ft	Groundwater Level(s)	Not measured during drilling; 3.91 feet BTOC on 9/5/00	Coordinate Location	S 48:36 E 946.61

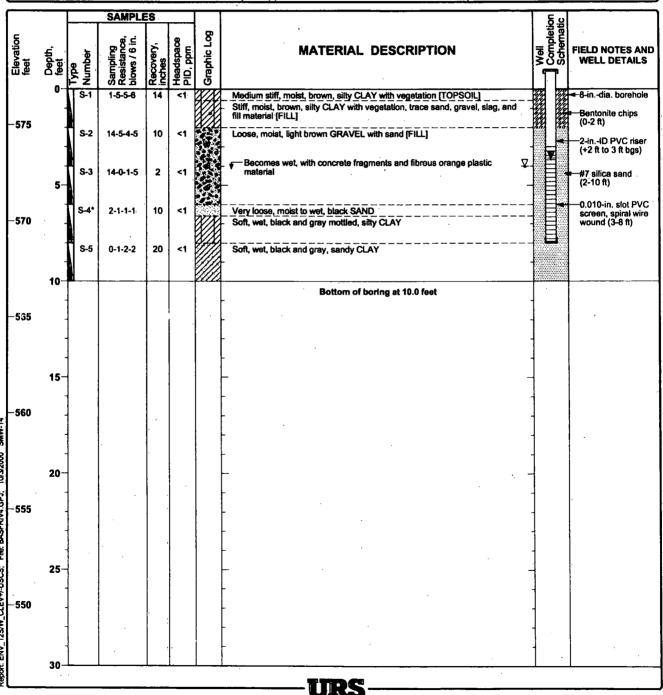
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SMW-12


Date(s) Drilled and Installed 8/3/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Steams Drilling (B. Grahm)	Total Depth of Borehole	12.0 feet
Sampling Method No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	584.19 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 7 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 7-12 ft	Surface Elevation	582.17 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-5 ft	Groundwater Level(s)	Not measured during drilling; 11.08 feet BTOC on 9/5/00	Coordinate Location	S 895.49 E 688.88

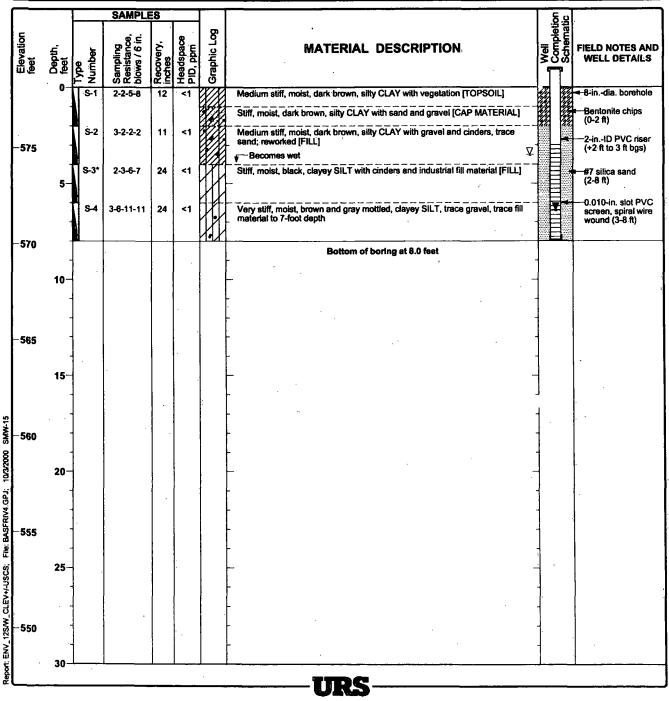
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SMW-13


Date(s) Drilled 8/8/00 and installed	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	12.0 feet
Sampling No samples collected	Hammer Data	Not applicable	Top of Casing Elevation	582.90 feet IGLD
Size and Type of Well Casing 2-inch-ID PVC +2 ft to 4 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 4-12 ft	Surface Elevation	581.07 feet IGLD
Seal or Backfill Cement 0-2.5 ft, bentonite 2.5-3.5 ft	Groundwater Level(s)	Not measured during drilling; 6.44 feet BTOC on 9/5/00	Coordinate Location	S 253.90 E 624.06

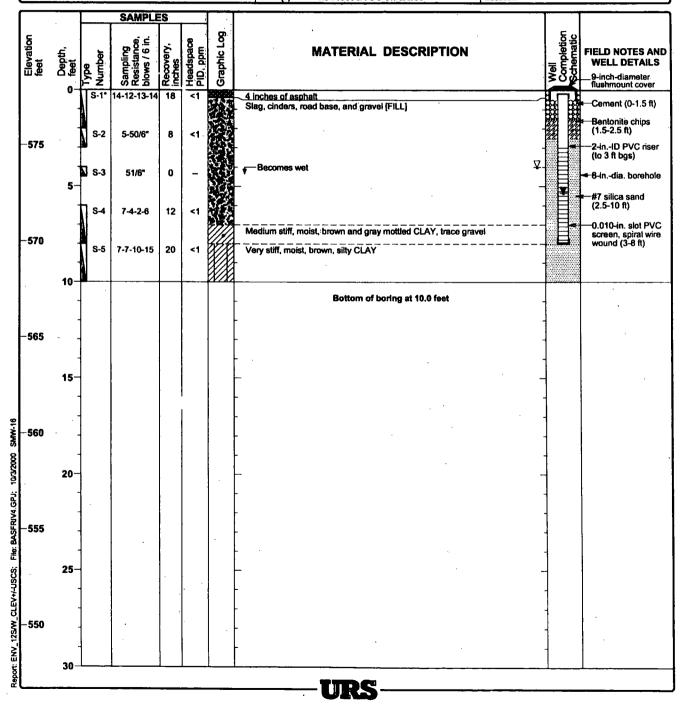
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-14


Date(s) Drilled and Installed 8/7/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Dritting Hollow-stem auger (CME 750X, Method 4.25-inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	10.0 feet
Sampling 2-Inch-OD split spoon Method ("" Indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	578.89 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	576.87 feet IGLD
Seal or Backfill Bentonite chips 0-2 ft	Groundwater Level(s)	4 feet BGS during drilling; 5.62 feet BTOC on 9/5/00	Coordinate Location	S 1193.54 E 708.81

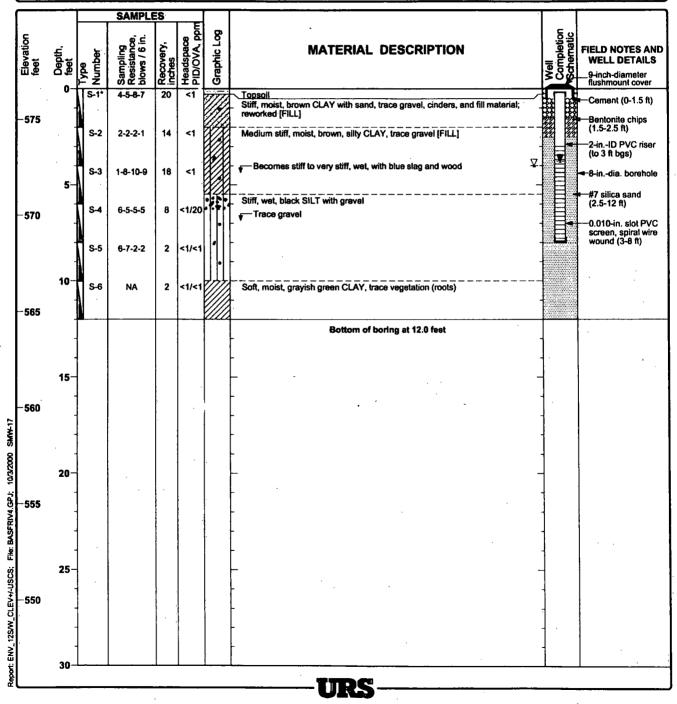
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-15


Date(s) Drilled and Installed 8/7/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	8.0 feet
Sampling 2-inch-OD split spoon (""" indicates (ab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	580.02 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	578.17 feet IGLD
Seal or Backfill Bentonite chips 0-2 ft	Groundwater Level(s)	3.5 feet BGS during drilling; 8.23 feet BTOC on 9/5/00	Coordinate Location	S 1218.56 E 558.46

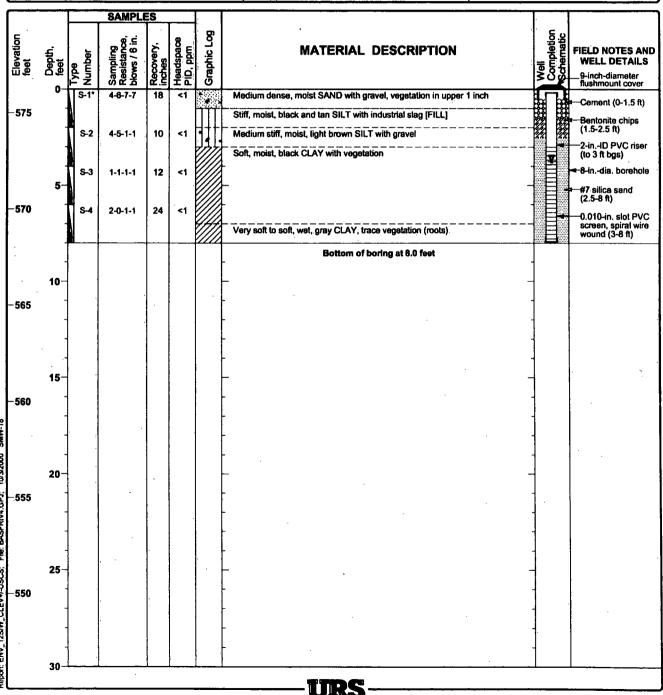
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-16


Date(s) Drilled and Installed 8/9/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	10.0 feet
Sampling 2-Inch-OD split spoon Method ("" Indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	577.45 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	577.87 feet IGLD
Seal or Backfill Cement 0-1.5 ft, bentonite 1.5-2.5 ft	Groundwater Level(s)	4 feet BGS during drilling; 4.94 feet BTOC on 9/5/00	Coordinate Location	S 1283.49 E 623.47

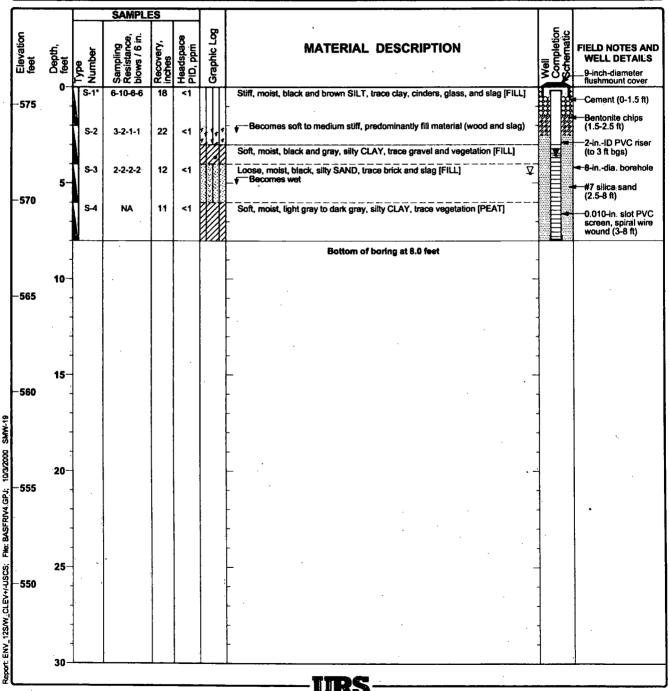
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-17


Date(s) Drilled 8/9/00 and Installed	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-inch-iD / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	12.0 feet
Sampling 2-inch-OD split spoon Method ("" Indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	576.16 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	576.59 feet IGLD
Seal or Backfill Cement 0-1.5 ft, bentonite 1.5-2.5 ft	Groundwater Level(s)	4 feet BGS during drilling; 3.34 feet BTOC on 9/5/00	Coordinate Location	S 31.96 E 827.54

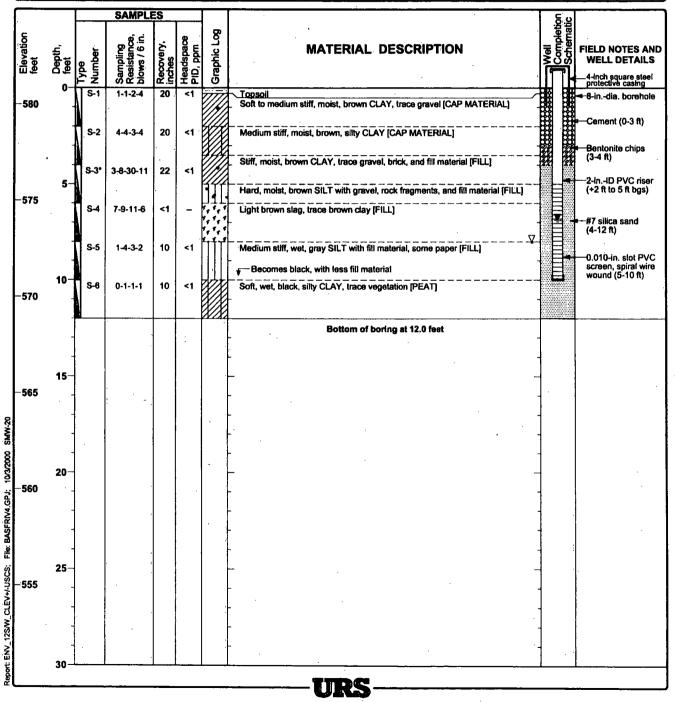
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-18


Date(s) Drilled and Installed 8/9/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	8.0 feet
Sampling 2-inch-OD split spoon Method ("" indicates lab sample).	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	575.74 feet IGLD
Size and Type of Well Casing 2-inch-ID PVC to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	576.24 feet IGLD
Seal or Backfill Cement 0-1.5 ft, bentonite 1.5-2.5 ft	Groundwater Level(s)	Not encountered during drilling; 3.26 feet BTOC on 9/5/00	Coordinate Location	\$ 119.53 E 903.44

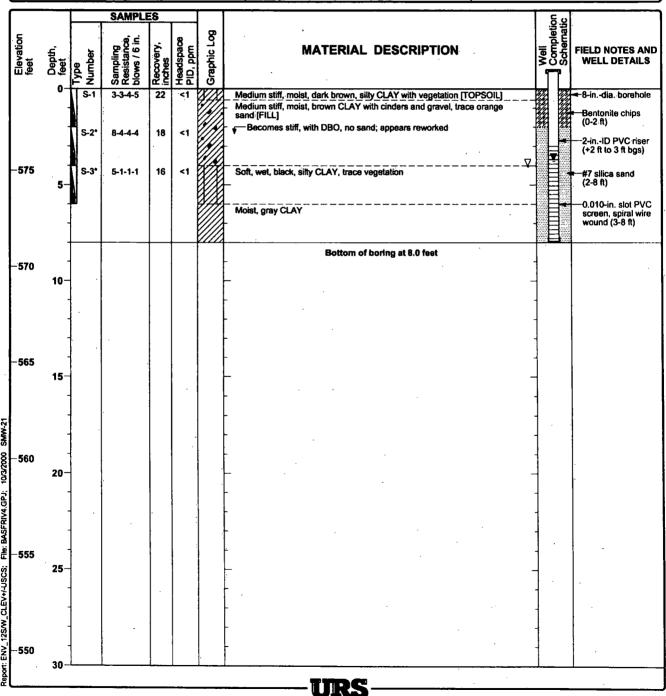
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SMW-19


Date(s) Drilled and installed 8/9/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4:25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	8.0 feet
Sampling 2-Inch-OD split spoon Method ("** Indicates lab sample)	Hammer Data	140 lbs / 30-Inch drop	Top of Casing Elevation	575.36 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	575.91 feet IGLD
Seal or Backfill Cement 0-1.5 ft, bentonite 1.5-2.5 ft	Groundwater Level(s)	4.5 feet BGS during drilling; 3.00 feet BTOC on 9/5/00	Coordinate Location	S 44.51 E 893.92

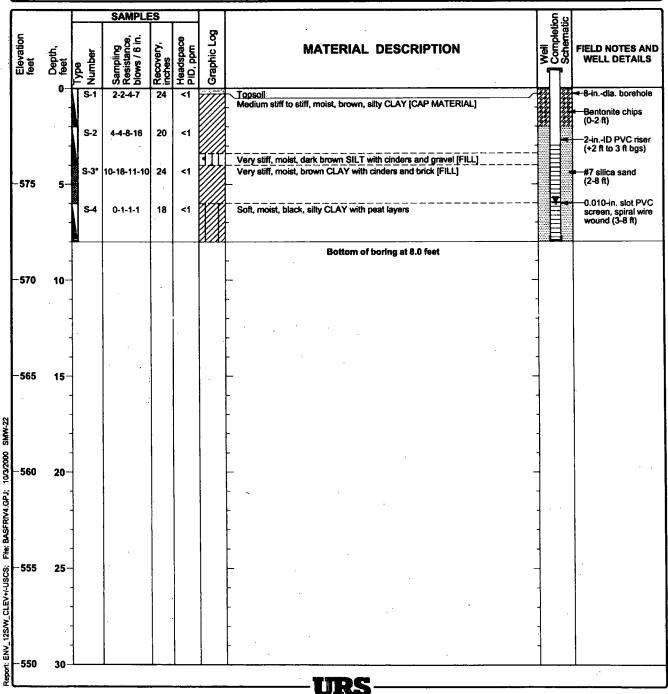
Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Boring SMW-20


Date(s) Drilled 8/7/00 and Installed	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	12.0 feet
Sampling 2-inch-OD split spoon Method (**" indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	582.98 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 5 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 5-10 ft	Surface Elevation	580:87 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-4 ft	Groundwater Level(s)	8 feet BGS during drilling; 9.00 feet BTOC on 9/5/00	Coordinate Location	S 527.68 E 682.62

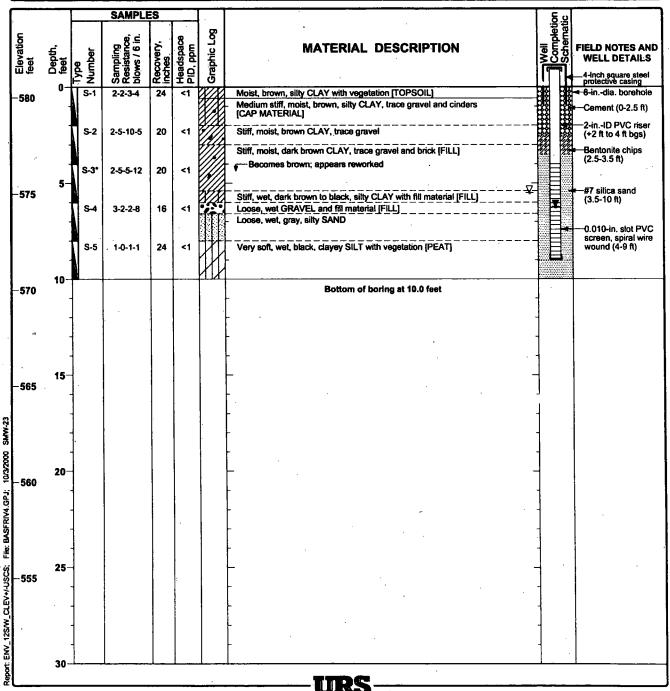
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-21


Date(s) Drilled and installed 8/7/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-inch-ID / 8-inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	8.0 feet
Sampling 2-inch-OD split spoon Method ("" indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	581.18 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	579.27 feet IGLD
Seal or Backfill Bentonite chips 0-2 ft	Groundwater Level(s)	4 feet BGS during drilling; 5.62 feet BTOC on 9/5/00	Coordinate Location	S 781.67 E 438.98

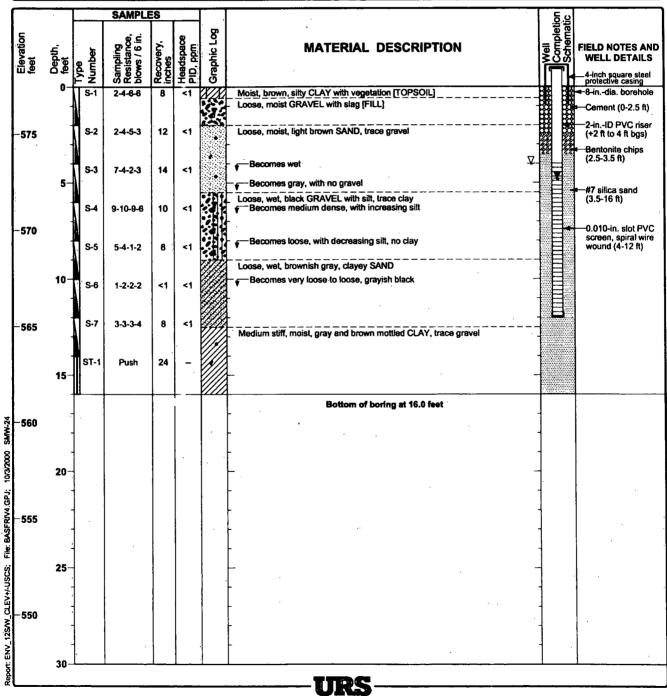
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-22


Date(s) Drilled and Installed 8/7/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	8.0 feet
Sampling 2-Inch-OD and 3-Inch-OD split spoon ("" Indicates lab sample)	Hammer Data	140 lbs / 30-Inch drop	Top of Casing Elevation	581.94 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 3 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 3-8 ft	Surface Elevation	579.97 feet IGLD
Seal or Backfill Bentonite chips 0-2 ft	Groundwater Level(s)	Not encountered during drilling; 7.98 feet BTOC on 9/5/00	Coordinate Location	8 364.15 E 357.63

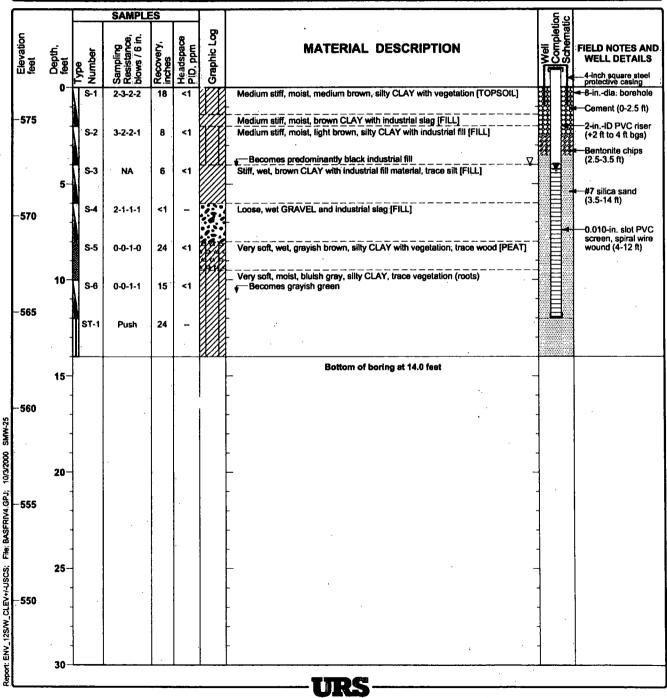
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-23


Date(s) Drilled and Installed 8/8/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	10.0 feet
Sampling 2-inch-OD split spoon Method ("" indicates lab sample)	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	582.47 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 4 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 4-9 ft	Surface Elevation	580.57 feet IGLD
Seal or Backfill Cement 0-2.5 ft, bentonite 2.5-3.5 ft	Groundwater Level(s)	5.5 feet BGS during drilling; 8.14 feet BTOC on 9/5/00	Coordinate Location	S 14.66 E 656.50

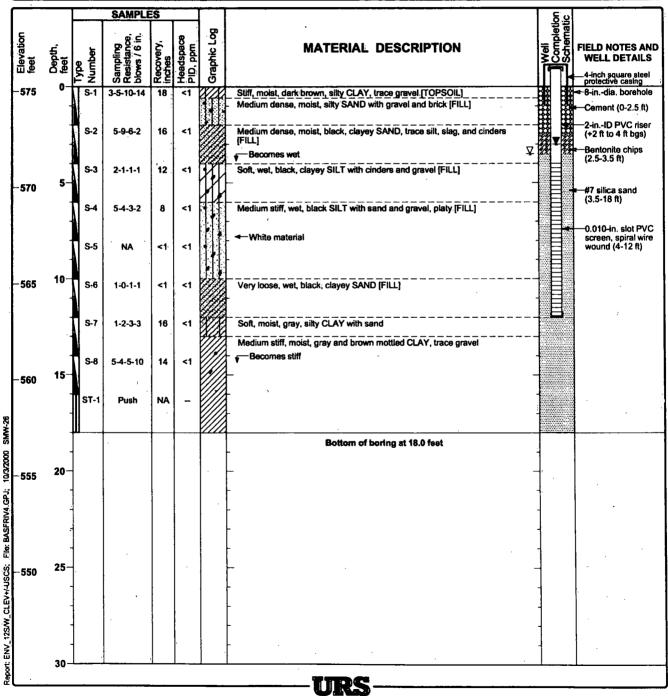
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-24


Date(s) Drilled and Installed 8/10/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 759X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	16.0 feet
Sampling Method 2-Inch-OD split spoon, Shelby tube	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	579.45 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 4 ft bgs	Screen Perforation	0:010-inch slot (wire wound) 4-12 ft	Surface Elevation	577.47 feet IGLD
Seal or Backfill Cement 0-2:5 ft, bentonite 2.5-3.5 ft	Groundwater Level(s)	4 feet BGS during drilling; 6.77 feet BTOC on 9/5/00	Coordinate Location	S 1051.84 E 887.27

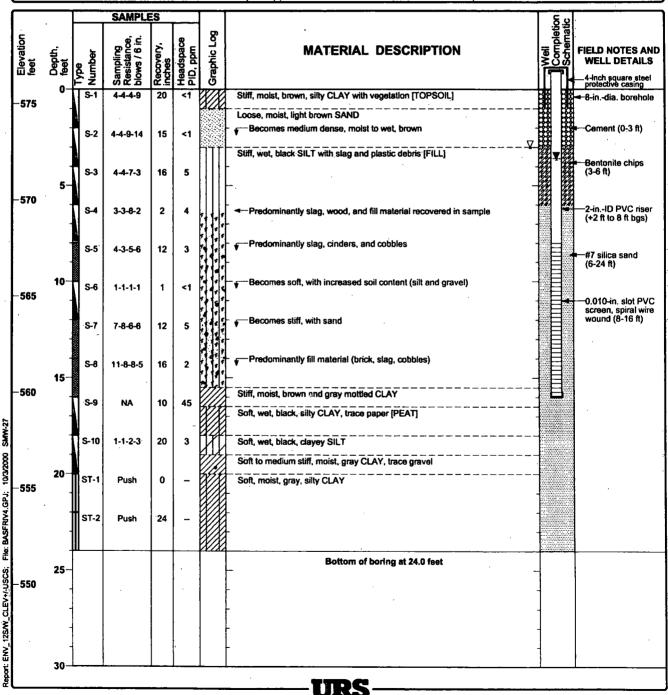
Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-25

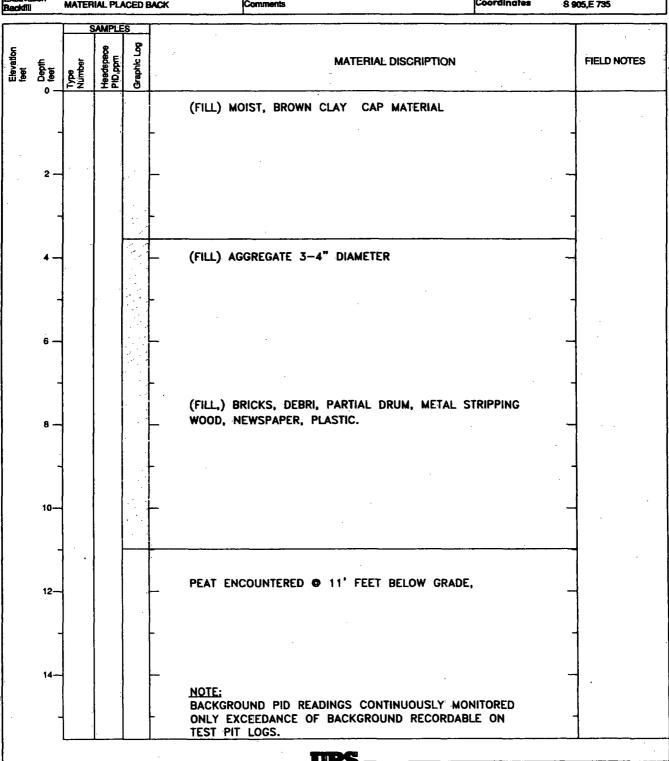

Date(s) Drilled and Installed 8/10/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	14.0 feet
Sampling Method Shelby tube 2-Inch-OD and 3-Inch-OD split spoon,	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	578.53 feet IGLD
Size and Type of Weil Casing 2-Inch-ID PVC +2 ft to 4 ft bgs	Screen Perforation	0.010-inch:slot (wire wound) 4-12 ft	Surface Elevation	576.67 feet IGLD
Seal or Backfill Cement 0-2.5 ft, bentonite 2.5-3.5 ft	Groundwater Level(s)	4 feet BGS during drilling; 6.14 feet BTOC on 9/5/00	Coordinate Location	S 752.14 E 925.61

Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Boring SMW-26

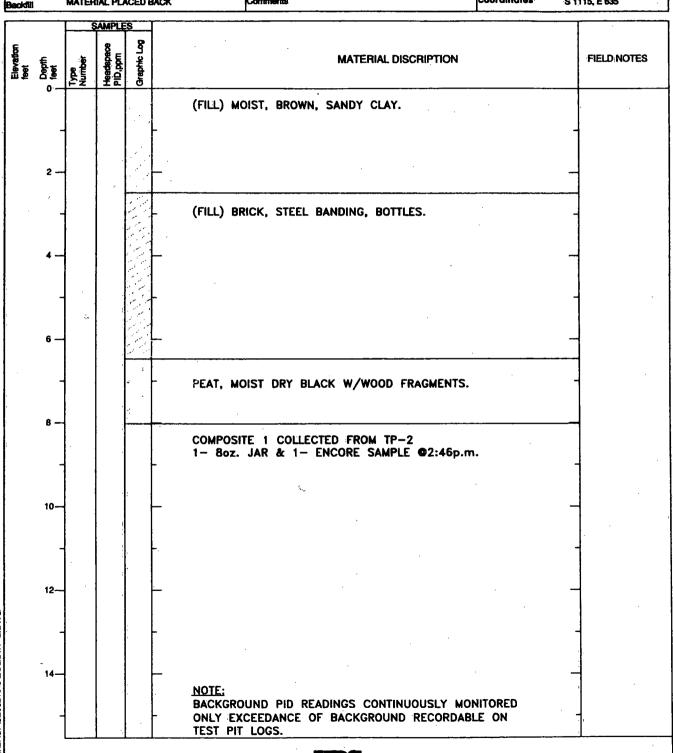

Date(s) Drilled 8/11/00 and installed	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	18.0 feet
Sampling Method 2-Inch-OD split spoon, Shelby tube	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	577.28 feet IGLD
Size and Type of Well Casing 2-Inch-ID PVC +2 ft to 4 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 4-12 ft	Surface Elevation	575.27 feet IGLD
Seal or Backfill Cement 0-2.5 ft, bentonite 2.5-3.5 ft	Groundwater Level(s)	3.5 feet BGS during drilling; 5.01 feet BTOC on 9/5/00	Coordinate Location	S 345.74 E 969.25

Project Location: Riverview, Michigan Project Number: 38-08E06216.04


Log of Boring SMW-27

Date(s) Drilled and installed 8/10/00	Geologist	J. Mielecki	Reviewer	J. Anderson
Drilling Hollow-stem auger (CME 750X, Method 4.25-Inch-ID / 8-Inch OD auger)	Drilling Contractor	Stearns Drilling (B. Grahm)	Total Depth of Borehole	24.0 feet
Sampling 2-inch-OD and 3-inch-OD split spoon, Method Shelby tube	Hammer Data	140 lbs / 30-inch drop	Top of Casing Elevation	577.69 feet IGLD
Size and Type of Well Casing 2-inch-ID PVC +2 ft to 8 ft bgs	Screen Perforation	0.010-inch slot (wire wound) 8-16 ft	Surface Elevation	575.77 feet IGLD
Seal or Backfill Cement 0-3 ft, bentonite chips 3-6 ft	Groundwater Level(s)	3 feet BGS during drilling; 5.52 feet BTOC on 9/5/00	Coordinate Location	S 136.67 E 1005.75

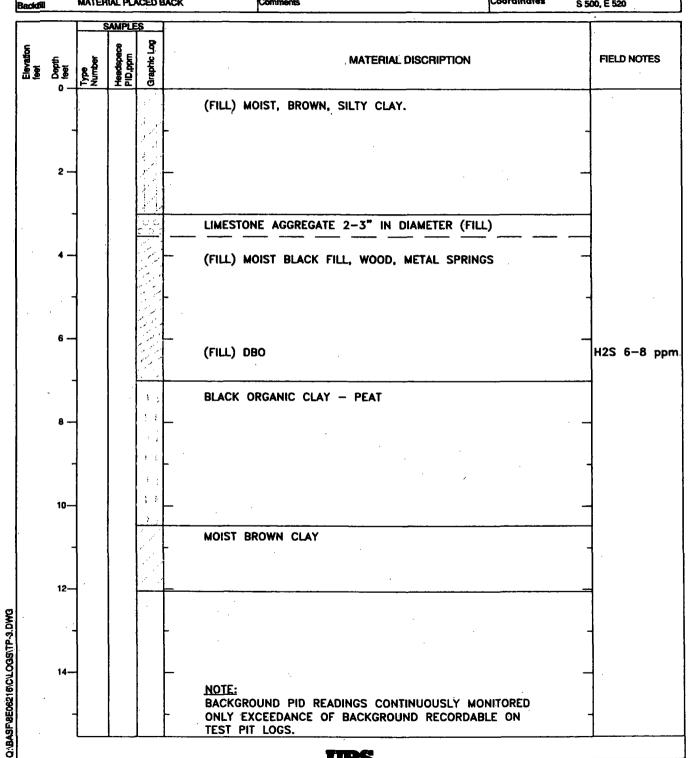
Project Location: Riverview, Michigan Project Number: 38-08E06216.04 Log of Test Pit TP-1


Date(s) Excavated	8-31-00	Logged By WILLIAM CLAYTON	Reviewed By TIM WHIPPLE
Excavation Method	BACKHOE	Excavation Contractor	Total Depth 11'
Groundwater Level(s)			Ground Suface Elevation(IGLD) 581.74
Excevation Backfill	MATERIAL PLACED BACK	Comments	Coordinates 8 905,E 735

Project Location: Riverview, Michigan Project Number: 38-08E06216.04

Log of Test Pit TP-2

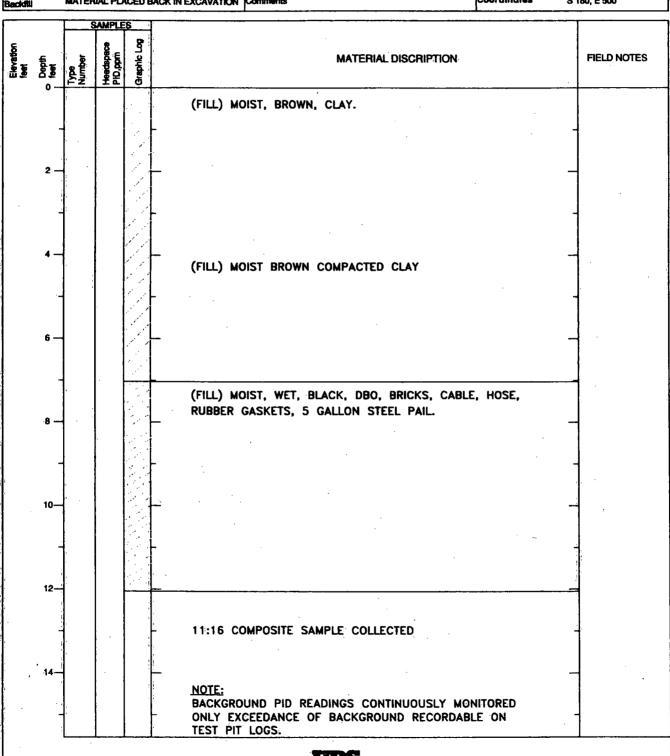
Date(s) Excavated	8-31-00	Logged By WILLIAM CLAYTON	Reviewed By TIM WHIPPLE
Excevation Method	BACKHOE	Excevation Contractor	Total Depth 8'
Groundwater Level(s)	5.7	Sampling NA Method NA	Ground Suface Elevation(IGLD) 577.37
Excavation Backfill	MATERIAL PLACED BACK	Comments	Coordinates S 1115, E 635



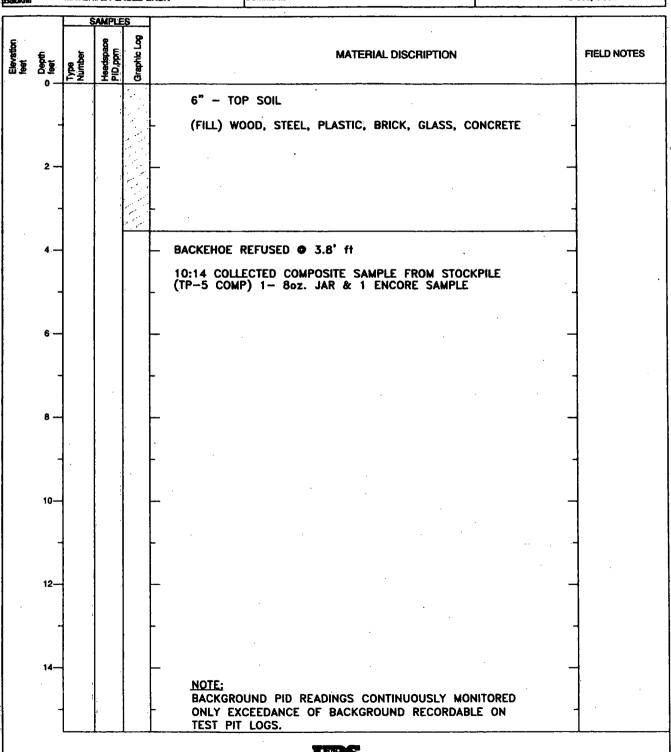
Project Location: Riverview, Michigan

Project Number: 38-08E06216.04

Log of Test Pit TP-3


Date(s) Excavated	8-31-00	Logged By	WILLIAM CLAYTON	Reviewed, By	TIM WHIPPLE
Excevation Method	RACKHOE	Excevation Contractor		Total Depth (ft)	12"
Groundwater Level(8)		Sampling Method		Ground Suface Elevation(IGLD)	579.98
Excavation Backfil	MATERIAL PLACED BACK	Comments		Coordinates	S 500, E 520

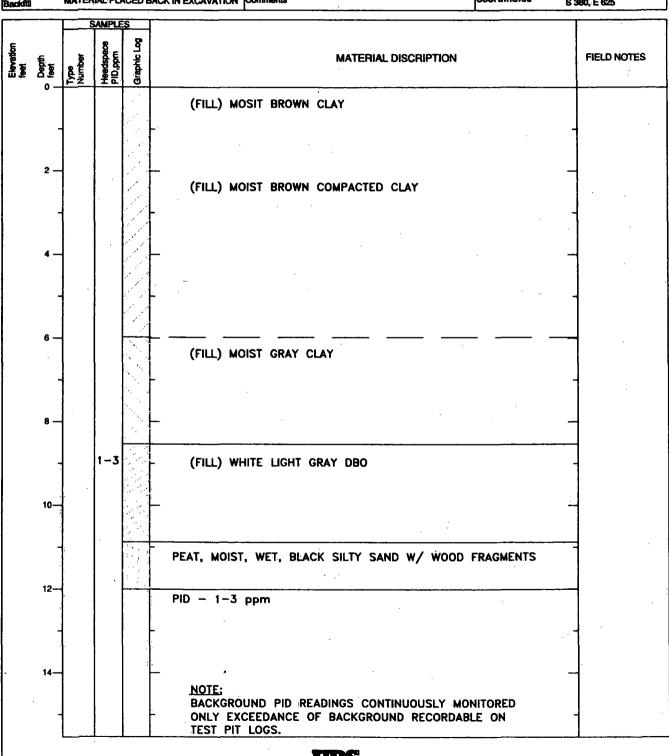
Project Location: Riverview, Michigan Project Number: 38-08E06216.04


Log of Test Pit TP-4

Date(s) Excavated	8-31-00	Logged By	WILLIAM CLAYTON	Reviewed By	TIM WHIPPLE
Excevation Method	RACKHOE	Excavation Contractor		Total Depth (ft)	12"
Groundwater Level(s)	7.0	Sampling Method	NA	Ground Suface Elevation(IGLD)	581.42
Excevation Backfill	MATERIAL PLACED BACK IN EXCAVATION	Comments		Coordinates	S 180, E 500

Project Location: Riverview, Michigan Project Number: 38-08E06216.04 Log of Test Pit TP-5

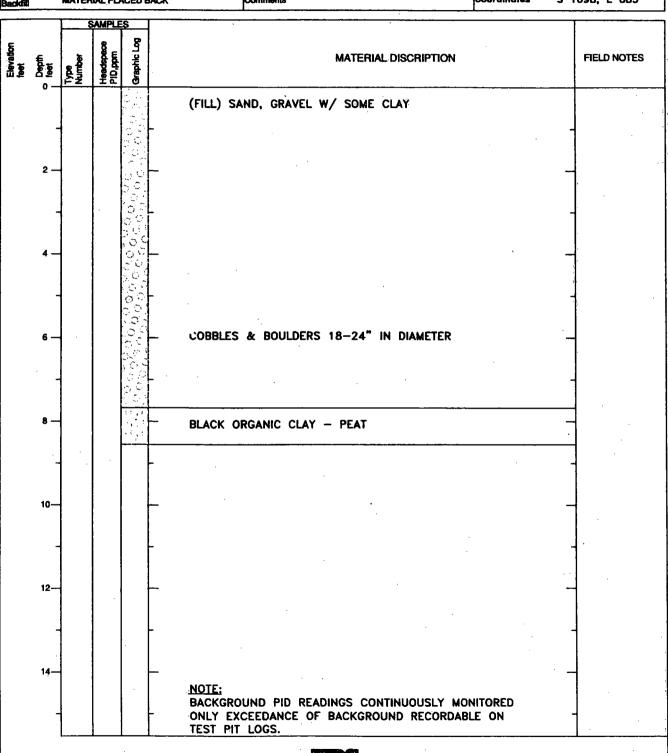
Date(s) Excevated	8-31-00	Logged By WILLIAM CLAYTON	Reviewed By TIM WHIPPLE
acevation dethod	BACKHOE	Excavation Contractor	Total Depth 3'
iroundwater evel(s)	3	Sampling Method NA	Ground Suface Elevation(IGLD) 575.77
ocevation	MATERIAL PLACED BACK	Comments	Coordinates S 380, E 880



Project Location: Riverview, Michigan

Project Number: 38-08E06216.04

Log of Test Pit TP-6

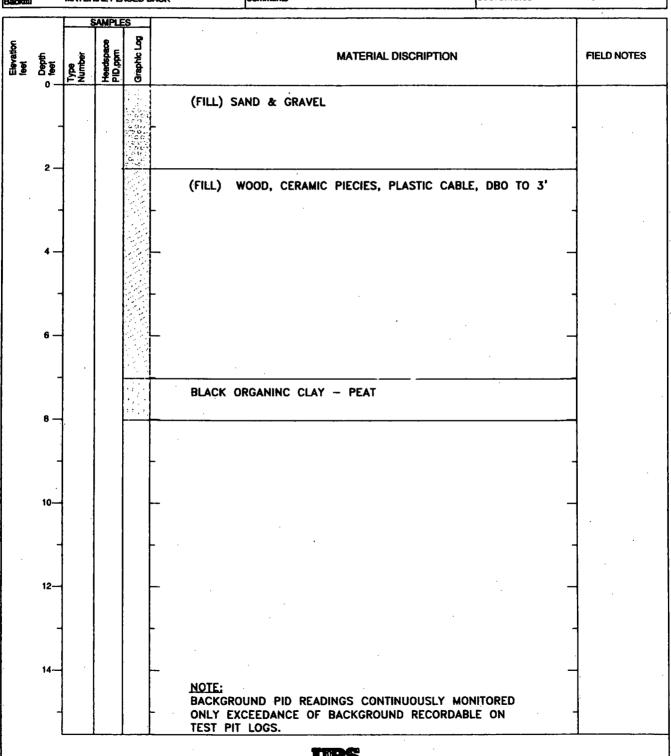

Date(s) Excavated	8-31-00	Logged By	WILLIAM CLAYTON	Reviewed By	TIM WHIPPLE
Excevation Method	BACKHOE	Excavation Contractor		Total Depth (ft)	12
Groundwater Level(s)	11'	Sampling Method		Ground Suface Elevation(IGLD)	583.65
Excavation Backfill	MATERIAL PLACED BACK IN EXCAVATION	Comments		Coordinates	6 380, E 625

Project Location::Riverview, Michigan Project Number::38-08E06216:04

Log of Test Pit TP-7

Date(s) Excavated	8-31-00	Logged By WILLIAM CLAYTON	Reviewed By	TIM WHIPPLE
Excevation Method	BACKUDE	Excevation Contractor	Total Depth (ft)	8.5'
Groundwater Level(s)	6.5		Ground Suface Elevation(IGLD)	577.42
Excavation Backfill	MATERIAL PLACED BACK	Comments	Coordinates	S 1098, E 885

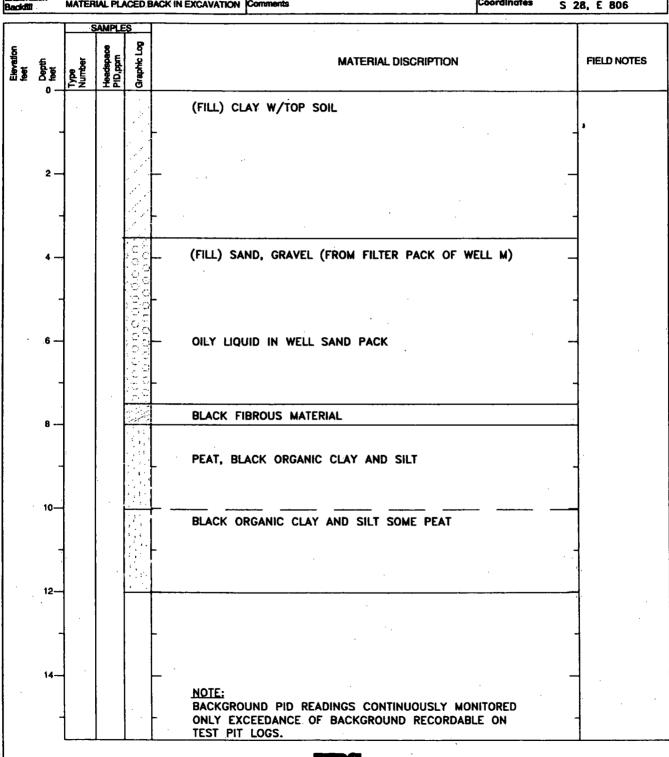
Project Location: Riverview, Michigan Project Number: 38-08E06216.04


Log of Test Pit TP-8

Date(s) Excevered	8-31-00	Logged By KEITH MAST	Reviewed By	TIM WHIPPLE
Excavation Method	BACKHOE	Excavation Contractor	Total Depth (ft)	7'
Groundwater Level(s)	5		Ground Suface Elevation(IGLD)	576.70
Excavation Backfill	MATERIAL PLACED BACK	Comments	Coordinates	S 852, E 908

lackfill	MATERIAL F		ACK Comments Coordinates	S 852, E 908
Elevation feet Depth	Type Number Headspace	8	MATERIAL DISCRIPTION	FIELD NOTES
0			(FILL) TOP SOIL, PIECES OF HOSE CLAY	
, -			(FILL) SAND & GRAVEL	-
2 —			(FILL) SAND, GRAVEL, SMALL PIECES OF CONCRETE, PLASTIC HOSE, WOOD SOME DBO	
4 —			<u> </u>	
-			BLACK TO GRAY ORGANIC CLAY PEAT	
6 —		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		
8			- -	
-			· · · · · · · · · · · · · · · · · · ·	
10-			_	-
12			-	
14—			<u>-</u>	
-			NOTE: BACKGROUND PID READINGS CONTINUOUSLY MONITORED ONLY EXCEEDANCE OF BACKGROUND RECORDABLE ON TEST PIT LOGS.	_

Project Location: Riverview, Michigan Project Number: 38-08E06216.04 Log of Test Pit TP-9


Date(s) Excavated	8-31-00	Logged By KEITH MAST	Reviewed By	TIM WHIPPLE
Excavation Method	RACKHOE		Total Depth (ft)	8'
Groundwater Level(s)	4'		Ground Suface Elevation(IGLD)	576.52
Excavation Backfill	MATERIAL PLACED BACK	Comments	Coordinates	S 606, E 927

Project Location: Riverview, Michigan
Project Number: 38-08E06216.04

Log of Test Pit TP-10

Date(s) Excavated	8-30-00	Logged By	KEITH MAST	Reviewed By	TIM WHIPPLE
Excavation Method	PACKUME	Excevation Contractor		Total Depth (ft)	12'
Groundwater Level(s)	NA .	Sampling Method		Ground Suface Elevation(IGLD)	578.71
Excevation Backfill	MATERIAL PLACED BACK IN EXCAVATION	Comments		Coordinates	S 28, E 806

			:			Information						
Project Na	me: B	4SF	RIGRAM Cont/ Diameter:	eu	Project N	umber: 3	8-08#	6062	16.09	(URS)		
Location:	Rive	new	mi		Field Personal: WRC							
Well ID:	DMW	- 1	Cont/ Diameter:	GS	€	۵11	Start Tim	e:				
Weather:	:			1	8/11/00	·	End Time): 				
Pump	Туре:	Peristaltion	· ·	·		Tubing:	1/4"ID HE	OPE .				
Field Monitoring Data and Paramters												
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General		
Units	-log(H [*])	°C/°F			ļ .	%	,	ml/min	ft (BTOC)			
T _{start} 6!/3		30.							10.9			
10:53	681	20.0		3,26	8					intote@ 275		
10:55	7.03	16.7		3.32	9					1095/literan		
11:02	7,12	16.6		3.34	q					•		
11:06	7.17	(6.6		3.35	3							
11:11	7.18	16.7		3.35	3	·			. !	·.		
11:16	717	16.8		3.34	2							
11:27	7.18	17.4		3,35	2							
11:28	7.18	175		3.35	2							
										,		
8:54									12.46	intake@ 27,51		
9:61	7,23	19.3		3,42	3							
9:05	228	16.9		3.39	1							
9:11	7.26	175		3,39	2					·		
9:16	7.27	17.8		3,38	2	:			!			
	_:							,				

General Information											
Project Na	ame: eta	ASF	River	riew	Project N	lumber:	58-0	8E06	216	04 URS	
Location:	Rive	rvic	WU	I		sonal: W					
i	Dmw-		Cont/ Diameter:	GS	pvē)	2"	Start Tim	e:	. <u>- — </u>		
Weather:				Date: -	8/29/0	<i>?</i> o	End Time): 			
Pump Type: Peristaltic Bladde, Tubing: 1/4"ID HDPE											
Field Monitoring Data and Paramters											
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General	
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)		
T _{start} :											
	Unap	le t	o re	rove h	ater	w/ bl	de	punp	~ în:	uffrent	
Wa	ter	use	d ba	yler ;	to fil	(Cont	عمدرج	as pe	- Na	er Rienest 4 Abdallas	
					·	"		2.			
			·					;			
		;									
		:									
	,	,									
	s.		,	\ \							
									,		
								r.			
		:									
		·			,						

General Information												
Project Na	me: BA	SFRI	vervie	w	Project Number: 38 - 08606216 · 04 (URS)							
Location:	River	-vieu	M/		Field Pers	sonal:	WE(7		·		
4	5B-2		Cont/ Diameter:	GS	(VC)	Start Time:						
Weather:				Date:	8/8/00	9	End Time					
Pump	Туре:	Peristaltic	3			Tubing:	1/4"ID HD	PE				
Field Monitoring Data and Paramters												
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General		
Units	-log[H ⁺]	°C/°F	i'			%		ml/min	ft (BTOC)			
T _{start} : 10-5	7.87	21.9		5.70	77				7.70	Intake 1017		
10:57	7,73	19.5		5.78	61							
10:59	769	1.7		5,61	72		,					
11:06	7.64	19.7		5.59	78							
11:10	7.54	20.3		5,45	77							
11:13	7.54	19,9		5.53	78							
	7.5.3	19.9		5.39	76					-		
					ļ. 							
							:					
		×										
						;						
								·				

						al Informati			- 3	
Project Na	ime: BA	SF R	VERVIC	=	Project I	Number: 38	3-086	0621	۵.04	
Location:	River	VIEW	1 MI		 					BOALLAH
Well ID:			Cont/ Diameter:	GS	ev c	(PVC) 2'1 Start Time: 9:13				
Weather:	SUNJAL	, 70°	<u>* </u>	Date: 8	121100		End Time			
Pump		Peristaltic		 	<u> </u>	Tubing:	1/4"ID HI	DPE		
				Field	Monitorin	g Data and	Paramter			
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	°C/°F		3%	40%	%	J	ml/min	ft (BTOC)	
T _{start} :9:13			·					150	871	INTAKE AT
9:33	7.81	18.7		6.35	3.9			и		
9:38	7.95	19.1		,47	1.61					
9:43	792	19.3		.48	-4.90					
9:48	7.88	19.4		.49	5.00		· · · · · · · · · · · · · · · · · · ·		12	
9:52	7.86	19.5	-	.70	-,7					
9:57	7.79	19.5		.73	9,4					WELL DRY ALLOW RECHARLE
			•							ALLOW RECHARLE TAKE SAMPLES 10:25
										VOC, 5 METALS
11:24										Return to Continu Sampling
	1		·					:		
				1						
				·,						
				<u>-</u>						
								·		

									- <u> </u>	
ļ				 -	Genera	al Information	on		 -	
Project Na	ame: Blas	F RIVE	RVIEW		Project N	Number: 38	3-08E	<u> </u>	04 /	(urs)
Location:	Rive	crvie	WM	1/	Field Per	rsonal:	MIELE	eci		
Well ID: [104/	GS	PVC)		15			
Weather:	SUNNY	75	0	Date: -	8/24/	9/24/00 End Time:				
Pump	Туре:	Peristalti	C.			Tubing:	1/4"ID H	DPE		
				Field	BC - ita in	g Data and	Paramtor			
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F			:	%		ml/min	ft (BTOC)	
T _{atart} : 8:45								360	22.65	INTAKE AT
								ļ		
8.47	6.58	16.0		3.31	385					
8:52	6.55	14.1		3.35	999		<u>.</u>	ļ <u>.</u>		
8:57	6.69	13.8		3.37	999					
9:02	6-3	14.1		3.34	999			<u> </u>		
9:07	6.80	15		<i>3</i> .35	141		<i>i</i> -	ļ		
9:12	6.77	14-8	·	3.33	384					
9:17	6.76	13.8		3.34	990					
9:22	6.74	14.9		3.32	999					
9:27	6.77	16.1		<i>3</i> .30	999					WELL DRY NO SAMPLES TAKE SAMPLES
10:50	-									take samples
	,			-						
				1						
				!						
					:					

			-		Genera	i Informatio	on					
Project Na	ame: Bas	SE RIV	EKVID	~	Project Number: 38-908E06216.04 (URS)							
Location:	River	rviei	NIM	1)	Field Personal: J. MIECECKI							
Well ID:			Cont/ Diameter:	GS		PVC) Z (1 Start Time:						
Weather:			5°	Date: 6	123/0	0	End Time	e:				
	Туре:	Peristaltion	·			Tubing:	1/4"ID HI	DPE	_			
				Eigld I	Monitorine	g Data and	Daramter	e .				
Time	pH	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General		
Units	-log[H [*]]	°C/°F				%		ml/min	ft (BTOC)			
T _{start} :/4/2	8				·			425	23.78	INTAKE AT 25 to 271		
1430	7.80	18.5		2.86	153		,					
1435	7.25	15.8	,	2-79	131	L		· ·				
1440	7.69	16.1	<u>-</u>	2.85	81							
1445	6.87	15.3		285	6(:		
1450	7.04	15.0		2.96	169							
1455	6.98	13.8		295	85							
1500	691	14.1		2-89	вл							
1505	691	14.2		291	80							
1510										Sample Time		
										Stop When WEN GOES DRY FIN		
										SAMPLING AT A LATER TIME. RETURN CONTINUE		
8/24/00 7:40										to SAMPLE		
&25 ∞ 9.35				,						-RETURN to CONTINUE SAMPLE! FINISH		
									an.93	FINAL WATER		
										LEVEL		
		1										
									1	†		

					Genera	al Informatio	on					
Project Na	Project Name: BASE RIVERVIEW Project Number: 38-08E06216:04 LURS)											
Location:			WIM		<u> </u>	Field Personal: J. MIELECKS						
Well ID:	-		Cont/ Diameter:	GS	PVC	PVC 2" Start Time: /1-00						
Weather:			, 4	Date: g	125/00	7	End Time	e: 				
Pump		Peristalti	•			Tubing:	1/4"ID HI	DPE	:			
Field Monitoring Data and Paramters												
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General		
Units.	-log[H*]	°C/°F				%		ml/min	ft (BTOC)			
T _{start} :/0:55			·					260	2285			
1107	2.38	17.6		3.33	999	,						
1112	7.46	16.3		3.39	319							
1117	7.46	16.2		3.40	188							
1122	7.39	16.0		3.43	133			260				
1127	7.33	15:5		3.45	99							
1132	7.35	15.4		3-46	93	·						
1137	7.35	1516		3.48	116							
1412	7.34	<i>/5</i> :3		3.48	97					SAMPLES COLLOG		
1215									23.05	AU SAMPLES COLLECTED		
					·					CollecteD		
	,						·					
·						·						
				•								
!				·								
	٠.											

	 -				Genera	ıl Informati	on			
Project Na	ime: BA	of R	VERVI	EUL	16.0	4 (UR3)				
Location:	RIVE	ervie	W, H	1	Field Per	sonal:)_	MIE	veck	<u>r</u>	
Well ID:	Dmu	1-13	Cont/ Diameter:	GS	PVC	2"	Start Tim	e: 14;	10	
Weather:				Date:	8/24/0	50	End Time):		-
Pump	Туре:	Peristalti	C			Tubing:	1/4"ID H	OPE		
				Field	Monitorin	g Data and	Paramter	<u> </u>		
Time	На	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H [*]]	°C/°F				%		rnl/min	ft (BTOC)	
Tatan:/4/40								450	21.55	Intaké set at
1454							ļ			
1456	6.46	18.5	· 	2.25	382				 	
1500	6.48	173		2.21	295	<u> </u>				
1503	6.40	16.4		2.27	222					
1508	5.18	17.7		2.29	102					
1513	5.41	17.0		2.25	82					÷ .
15:18	5.59	17.4		2.28	68					
15:23	6.55	17.3		2.34	46					
15:28	6.51	17.1		2.39	42					·
15:33	6.60	17		2.44	74					
15:38	6.61	17.1		2.47	62					
15:43	660	17.3		251	5B					
15:48	6.51	17.6		a.54	59			1		Samples Collecte
		·		\						9/25/06 7:30 MODE SAMPLES 8/25/00 9:00
										Finish Samples
:	·									
		· · ·					 		 	

			<u> </u>		Genera	l Informatio	n .		- 	
Project Na	me: BAS	SF RIV	ERVIEW	,	Project N	umber: 3	8-08	€0621	6.04	(URS)
Location:	Rive	rvie	W, K		Field Per	sonal:).	MIE	LECKI		
Well ID:			Cont/ Diameter:	GS	(FVC)	2"	Start Time	e: 7:/4	+	
Weather:	700	SUNNY		Date: 8	123/00	>	End Time):		
Pump	Type:	Peristalti	C			Tubing:	1/4"ID HC	PE		
				Field I	Monitorine	Data and	Paramters			· · · · · · · · · · · · · · · · · · ·
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} :7:/4								200	781	INTAKE AT
7:18	11.84	16.2		2.27	47,2					
7:23	11.24	16.4		2.18	83.4					
7:28	11.88	16.9		1.74	94.9					
7:33	11.87	17.5		1.75	190.0					
7:38	11.85	11.5		1.74	278					·
7.43	11.94	17,5		1,78	385					
7.48	11.82	17.4		1.85	515					
7.53	11.81	17.8		1.84	594					
7.58	11.80	17.8		1.21	675				<u> </u>	
8:03	11.78	17.8		1.83	759					
8:08	11.78	17.8		1.91	804					
8.13	11.76	18.1		1.93	885			V_		
8:15								ļ. <u></u> .		Colect Samples
	[-		1							·
							i			
					,					
					·					

Г			LOW FI	ow Gro		er Sampl I Informatio			9	
Project Na	me: BA	SF A	OVERNI	Ew	Project N					(URS)
Location:	RIVE	rvie	W, L	11	Field Pers			ELECK		
ن :Well ID	smw-	- 11	Cont/ Diameter:	GS	€V∂	211	Start Time	e: 14:	45	
Weather:	SUNN	1 7:	50	کے Date:	122/0	6	End Time	: اله :	40	
Pump	Type:	Peristaltio	;			Tubing:	1/4"ID HE	PE		÷
			<u> </u>	Field I	Monitoring	Data and	Paramters	3		
Time	ρH	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	•
T _{start} : ///								孝	STA	3.71
14:58	11.18	23.3		2.19	72.4			350		INTAKE AT
15:02	11.14	22.4		2.29	40.2					
15.07	וווט	<i>2</i> a.5		2.20	28 6)				
15:12	11.10	22.1		2.32	21.9					
15:17	11.13	22.2		2.30	16.7					
15:22	11.11	22.0		2.27	10.8					
15:27	11.11	22.0		2.38	9.7					
15:32	11.08	22.0	-	2.32	11.1					
15:37				2.32	7.4					
15:42	11.05	223	·	2.40	3.9				ļ	
15:44	11.03	22.2		2.35	-1.5					
15:52	11.04	22.5		2.34	27			V		TAKE SAMPLES
									4.01	TAKE SAMPLES
							:			
						·				

					Genera	l Informatio	n _	, S		
Project Na	ame: BAS	SF K) IVERVIE	·	Project N	umber: 3	8-08	ED610	260	4 (URS)
Location:						sonal:),				
Well ID:	IMW.	- ((Cont/ Diameter:	GS	(VC)	2"	Start Time	: 12:	55	
Weather:	75 5	MANA		Date: 2	3/22/0	7D	End Time	:		
Pump	Туре:	Peristaltion	c .			Tubing:	1/4"ID HD	PE		
			Ť.	Field I	Monitorine	g Data and I	Paramters			
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} 72:55								300	3.59	
12:58								300		
13:00	10.57	19.8	ļ	2.70	62.6			·		
13:05	10.55	19.9		2.63	31.0			 		
13:10	10.60	20.4		2.64	16.7			: -		
13:15	10.71	20.3		2-22	18.8					
13:20	10.18	20.0		2.75	11.2			-		·
13:25	10.84	19.8		2.86	10.5					
13:30	10.84	19.8		2.88	9.5		· 			E
13:35	10.92	20.1		2.91	9.4					Samples Collected
[4:35				· ·						SAMPICOMPLETO TAKE DUP
					,					1 I
									ļ	IMW-110
	:	:								
1	· •		<u> </u>							
·				·						
		· .								
	,									
		:				•				

					Genera	l Informatio	on	ī.		
Project Na	me: BA	F Riv	ierview		Project N	umber: 38	-08EC	06216	04 (urs)
Location:	RIV	ervie	WIH	1	Field Per	sonal: <u></u>),	MIELE	CKI		3
Well ID:	Inu	-12	Cont/ Diameter:	GS	PVC	z"	Start Time	e: 12	8:00	
Weather:	Pt. Cion	104 -	700	Date: g	3/22/0	סז	End Time):		
Pump	Туре:	Peristaltion	;			Tubing:	1/4"ID HD	PE		
ļ			<u>.</u>	Field I	Monitoring	Data and	Paramter	-3	on Herry Commen	
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				. %		ml/min	ft (BTOC)	
T _{start} 7:10							·	<i>a5</i>	11.13	THYAKE AT
8:00	10.18	17,2		4,16	0.0					
8:05	10.18	16,2		4.40	-9.8			60		<u> </u>
8:11	10.18	16.1		4.42	-/ن					
B:ile	10.17.	16.2		4.42	-10					
8:21	10.17	16.5		4.43	-10			1		Oblect Samples
11:00									11.63	Final H20
										Lever
		-						Ì		
		٠.								
						,				
			:							
			,						ļ <u></u>	
				:						
· -										

Low flow sampling sheet.xls

01/03/2000 11:42 AM Joh 19

					Gener	ai informati	on			
Project Na	ame: B	ASF 1	RIVERVI	IEW	Project N	lumber:	38-0	8E062	16.04	(URS)
Location:		4	ew, L		Field Per					BDALLAH
Well ID:	SMW	-14	Cont/ Diameter:	GS	PVC		Start Tim	•		
Weather:				Date:	8/14/5	no .	End Time	> :		
	Туре:	Peristalti	c			Tubing:	1/4"ID HE)PE		
				Clotel	Monitoria	- Dete and	Dommton			
Time	pH	Temp	DO	Cond.	Turbid.	g Data and TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} : 7:13			;					380	5.41	INTAKE AT 7.50'
7:37	7.99	18.5	4.35	.26	6:3		-129			
7.42	7.88	18.5	7.69	م24,	45		-122			
7:47	8.12	18.6	7.92	. 24	3.4		-136			
7:52	8.24	18.5	7.83	ما2 ،	4.7		-130			
7:57	8.40	18.6	డి.65	ما2،	4.8		-141			
8:02	8.33	ાકુંદ્ર	୧୫୧	مادر	2.0		-144			
8:05	8.37	1g.9	6.29	مك2،	-5		-154			
8:09	8.37	19.1	6.87	, ۷۷	-3.2		-149		·	
8:14	8.38	19.1	1092	ىيا2 ،	-4.5		-125			
8:19	2.40	19.1	7.81	م25.	-5.9		-142			
8:24	8.46	19.1	5.93	، کال	-5.4	<u> </u>	-164		L	
	,			ļ. 						SAMPLE
									542	FINAL
				1			·	·		
·				,						:
				·						
								·		

<u> </u>						l Informatio				
Project Na	me: BA	st R	IVERVIE	. ب	Project N	umber: 3	8 086	0621	٤٥.٥	(URS)
Location:	Rive	rVie	W, K	11	Field Pers	sonal: 」、	MIEG	cci		
Well ID: ع			Cont/ Diameter:	GS	PVC	2"	Start Time	e: 1	2:45	
Weather:	SUNNY	75	0	Date: 8	3/19/00	<u>, </u>	End Time	: 1	7:50	
Pump	Туре:	Peristaltion	:			Tubing:	1/4"ID HD	PE		
			·	Field N	donitoring	Data and I	Paramters			
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} : 12.45	10.62	21.0			2.2			50	109)	SET IN TAKE AT 20 ft,
13.18	10.62	21.0		5.20	2,2					
13:23	10.53	20.6		5.22	3.7					
13:28	10.30	21.7		5.11	-3.0					
13:33	10.32	23.0		5.10	-1.3		_			
(3:38	10.48	21.3		5.10	-9.2					
13:43	10.49	20.4		5.07	-9.4		:			
13-48	10 45	20.9		5.04	40.0					Samples loved
			,							
		-				· ·				
				-						
·										
									1.	
								·		
		. :								
;			·							
									ļ	

Γ						I Information								
Project Na	oject Name: BASFRIVERVIEW Project Number: 38-08E06126.04 (URS) cation: RIVERVIEW, HI Field Personal:													
Location:			1,41		Field Per	sonal:	,		···					
Well ID:	SMW	26	Cont/ Diameter:	GS	evc)	20	Start Tim	ie:						
Weather.				Date: -	8/23/	00	End Time	e: 		<u>.</u>				
Pump	Туре:	Peristalti	c			Tubing:	1/4"ID HI	DPE	······································					
	-			Field !	Monitorin	g Data and	Paramter	<u> </u>						
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General				
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	TD 14.40				
T _{otart} :									4.82					
11:04	11.16	17.4		6.91	403									
1/:08	11.15	17.2		6.42	410									
11:16	11.16	/8,		6.61	125									
04.][11,20	(21		6.00	80									
11:26	11.22	17,7		6.03	41									
11:32	11.18	17.9		600	40			185/ min		÷				
11.38	11,22	17.8		6.05	39				·					
						· .	·							
,,														
_	ı													
						· i								
				1										
		1												
			:	ı										
		 				:								

					Genera	I Informatio	n			
Project Na	ame: ℓ	ASF'	River	···· Vieu	Project N	umber: 2	38-08	EUGI	26.04	H(URS)
Location:				1	Field Per					
Well ID:	Smw		Cont/ Diameter:	GS	PVĈ	ربر ع	Start Tim	e:		
Weather:				Date: 8	122/0	0	End Time			
Pump	Type:	Peristaltion	•			Tubing:	1/4"ID HI	OPE		
				Field	Monitorine	g Data and	Paramter	S	er Mentaga	
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F			,	%		ml/min	ft (BTOC)	TO 18,28
T _{start} :					·		:			
· ············									5.62	intakoe17,5
16:41	1634	16.7		22.5	387					
16.44	1145	159		28.9	272					
16:47	//:43	15.7		26.8	230	·				
16:51	11,42	15.7		24.2	224					
16:55	1142	15.4		22.3	209					
16:59	11.41	15.6		211	208					
17:07	11.39	15.7		209	203					
17:12	11.40	157		18.2	156				ļ	
MIL	11.43	15.5		18.7	110		<u> </u>			
17:21	11.42	15.4		18.7	90			240/4.1	1	
12:16	11.42	15.6		/8.3	94					
	<u></u>							, ,		
9:31							<u></u>		5.64	will begin sampling
	,			:						
	,									
					1			1		

						I Informati				
Project Na	ame: Q	BASF	Rive	VICU	Project N	lumber:	58-08E	DG1 2	6.04	(URS)
Location:		• •),41		Field Per		WEL			
Well ID:	P2-6		Cont/ Diameter:	GS	PVC	2 U	Start Tim	e:		
Weather:				Date: 8	/10/00		End Time):		,
Pump	Туре:	Peristaltic	c			Tubing:	1/4"ID HE	PE		
				Field	Monitorin	g Data and	Paramters			
Tìme	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	°C/°F			- 	%		ml/min	ft (BTOC)	
Tatartig/10	<u> </u>							·	5.70	Intake at 11.8
8:07	9.89	17.0		13.7	10					
8:09	920	16.3		13.8	28					
8:13	942	16.4		13,4	39					
8:17	9.57	165		126	30					
8:23	9.76	16.7		93	39					
8:29	980	145	·	8.2	10		ì			
: :	9.81	16.6		7.60	П					
			:							Conducted Acto Cal
४:३७	8.48	17.1		6.77	-					on unit
8.42	9.31	17.0		4.61	<u> </u>					
ļ	9.34	il9		6.6%						
8:55	9.38	16.9		6.46						3.0-3.5 gall, rama
										Flow measured R
										= low measured R ,29 liters/min
										·

	·		<u>-</u>		Genera	l Informatio	on			
Project Na	ame: \int	ASF'	Rivery	iew	Project N	umber: 3	8-08E	6216.	046	urs)
Location:	^	VIEW	1M1		Field Per	nonal:	UEC.			
Well ID:	\$ M		Cont/ Diameter:	GS	€	2"	Start Time	e:		
Weather:			· ·	Date: 8	17/00)	End Time	:		
Pump	Туре:	Peristalti	}			Tubing:	1/4"ID HE	PE		
		-		Fleid I	Monitorine	Data and	Paramters			
Time	рΉ	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H [*]]	°C/°F			·	%		ml/min	ft (BTOC)	
T _{start} :									9.42	intake@ 106
15:31	7.58	25.6		7.52	76					
15:35	2.57	231		7.48	27					
15:40	7.58	22.9	;	7.45	76					
16:25										well dry @inteter
				:						
9:07		:							9.10	intake@ 105
9:57										well drye intake
7:59	:								966	intete @ 105
9:05				 	:					dryat intute
		<u>.</u>							t	
16:53			· ·					<u> </u>	9.55	intakee 10.5
							<u>.</u>			
							1			

					Genera	al Informatio	on			
Project Na	ame: b	ASF'	River	riew	Project N	lumber: 3	8-08	E061	26.04	(LURS)
Location:			ew, M		Field Per		WR(•
Well ID:	PZ-4		Cont/ Diameter:	GS	PVC	2"	Start Time	e:		
Weather:				Date: §	9/10/00		End Time):		
Pump	Туре:	Peristalti)			Tubing:	1/4"ID HE	PE		
			 	Field	Monitorin	g Data and	Paramter			
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} :15:00									529	intake 11.5
	_									
15:14	10.05	2011	<u> </u>	19.4	145					
15:16	10.17	18.7		202	145					
15:22	10.24	19.1		20.6	143					
15125	10.25	18.5		205	10					
15:29	10.29	18.8		20.3	5					.19 liter/min
15:35	10.37	18.7		20.3	-10			· · · · · ·		
15139	18.42	18.8		20.2	-10					
1542	10.43	18.7		19,7	-7					
						-				
16:45									5.60	@ Completion of Sampling
										of Sampling
										·
			<u>,</u>							
						ł :				

1						Genera	i Informatio	n			
	Project Na	me: B	ASF	Riveri	rew	Project N	umber:	38.0	8 800	0216.	04 (URS)
	Location:	BAS	SF K	ivervi	2 WINI	Field Per	sonal:	Heid	i Fr	eder	icls
,	Well ID:	MW-	B	Cont/ Diameter:	GS	PVC	<i></i>	Start Time	e:	7:40	
	Weather:	Sur	ny	750	Date:	8/10	100	End Time	: /0	0:00	
	Pump	Type: (Peristaltic	<u> </u>			Tubing:	1/4"ID.HD	PE TO	190N	
; }					Field A	Aonitorine	Data and	Paramters			
	Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	WTQ	General
,	Units	-log[H ⁺]	(°c)°F		45/cm		%		ml/miņ	ft (BTOC)	10.3 TD 0.73 = 1 vol
1 10	Tetart: 8:45	7.7	20°6		23	out of range - Low				5 75	recalibrating problems, is incorrect
-	8:50	6.4	19	. 1	15	out of range				,	
	855	8,2	20		15	14					Set intake at 9.5ft
- }	9:00	8.7	19		15	111					
e si	9:05	8.9	19		15	1111					1.0 gal purged
· .	9:10	9.0	19		15	Hata				Durge	1.0 gal purged
- ,						·					
	· .										began Sampling
						· · · · · · · · · · · · · · · · · · ·					NTW=
		 				 					6.27ft after
											Sampling
									· 		·
											
	i	· · ·					. 			-	
								,			
-	· :	<u> </u>			·						
· ·											
1						<u> </u>		<u> </u>	<u> </u>		

					Genera	I Informatio				
Project Na	me:	3ASF	Fire	rview	Project N	umber:				,.04 (URS)
Location:	Ri	Jervi	ew, M	II.	Field Pen	sonal:	Heid	i Fr	ider	icls
Well ID:	MW-	E	Cont/ Diameter:	GS	PVC		Start Time	e: {	7:15	
Weather:	Sou	ercast	780	Date:	8/9/	00	End Time	: <i> </i>	0:10	
Pump	Туре:	Peristaltic	<u>ک</u>		:	Tubing:	1/4"ID HE	PE T	196N	
<u></u>	± 0.1			±37		Data and	Daramtan			
Time	pH	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	© °F		HS/cm		%		ml/min	ft (BTOC)	9.61 to pure
Tetartig: 25	4.49	21,5		1.04	78				4.55	Infale set at
8.30	5,38	20.9		0.93	71					6ft.6i
8:34	6.30	20.2		0.98	69					purged 1.25
8:38	6.75	19.6		1.47	23					purged 1.25 gallons at 8:50 AM
8:41	7.46	19.0		2.72	23					resent intake
8.45	7.49	19,2°		4.10	30					0 764
8:50	8.25	19.4		5.16	78					
9:00	8.81	22.3		6.02	67	<u> </u>				Purged 1.5 9416NS Total
9:03	9.09	22.0		4.80	69					Total
9:07	9,24	21.1		7,20	71					
9:10	9.36	20,8		7.20	21				·	Sampled at
9:14	942	21.4	<u> </u>	7,20	24					9:05
9:17	9.42	21.3		7,20	24					
				1						Minute
;	:			8:	75-I Mi	rute 31	Second	s pe	250	ML
				8:0	0 -75	liter	Pen	Hern	te Ho	after
920	9.42	20.1		7.47	23	ļ,				after
*				F1	iw 1	ate.	for s	aup	1.19	Sampling er Minute
					6	ess t	Man	2501	IL p	er Minute

					Genera	Information	n				
Project Na	me:				Project N	umber: 3	8-08	5062	16.04	LURS	3)
Location:	BA	SF A	Piverv	iew	Field Pen		_ ,		lerick		
Well ID:	DMW	1-6	Cont/ Diameter:	GS (PVC)	Start Time	: 10	:40		:
Weather:	78°	dver	cast	Date:	8/9/	100	End Time	: 12	:45		
Pump	Туре:	Peristaltic				Tubing:	1/4"ID HQ	PE TY	90N		
				Field N	Monitorine	g Data and	Paramters				
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	Gene	eral
Units	-log[H ⁺]	<i>(*)</i> /*F		4S/cm		%		ml/min	ft (BTOC)	24.0f+ 2.96	Purge a
T _{start} : (0:40	8.18	18.0		2.71	40				5.50		
10:45	7.78	19.1		2.75	7/					17.5f+	
10:49	7.41	17.7		2.77	21					flow re than 35 per min	ate less
10:52	2.24	19.1		277	74					•	
10:54	7.15	18.4		2.74	4					11:05) pur	sgallon ged
11:00	7.09	19.4		2.72	79						
11:04	7.12	16.6		2.71	79		_		Total	1.2594 purga	10NS
11:07	7.10	15.6		2.70	73				anout		
11:10	7.09	15.6	}	A.74	22					DTW	after
11:14	7.05	16,2		2.74	77					5 AMP ! = [0.	84F(
11:17	7.03	16.3		2,73	78			, .			
11:20	7.07	16.2		2.72	87				·		
11:25	7.08	16.7		2.72	91						
11:29	7/3	16.8		2.72	93						
			flo	va	te D	ring	Sampl	ing	les:	sthan	/
						/				250 M	.
8/10/0	0 7	145	begg	v.Sa	MA	19 D	Min-3	-		Mich	ute
	HF	for	nela	15,1	W.	wef (Lear	4 A	1/2		

	Project Name: Project Number: 38 - 08E06216.04 (URS)													
Project Na	me:		• .		Project N	umber: 39	3-08E	86211	6.04	(URS)				
Location:	BA	ISF	River							ricks				
Well ID:	DMU		Cont/ Diameter:		PVC		Start Time	e: /	4110					
Weather:	Suni	ny 85		1	8/9/	60	End Time	: /7,	1:45	will restart tomorrow on				
Pump ⁻		Peristaltic				Tubing:	1/4"ID HD	PE TY	90N	will restart formorrow on well at 7:45A.M.				
Field Monitoring Data and Paramters														
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General				
Units	-log[H [*]]	°C/°F		<i>mSlcm</i>		%		ml/min	ft (BTOC)	2.86 gallons to purge 2.86 gallons to purge				
T _{start} :/4/15	6.48	20.1		2.52	95				6.10	Intale set at 23ft				
	6.33	1. ————————————————————————————————————		2.56	95					<u></u>				
I I	6.22	18.9		2.56	94					Purged=1.6 gallons				
	6.03	18.2		2,56	89					flow rate Loss than 250 ML per minute				
14:30	6.01	18.3		2.56	55					15.25 began				
14:35	5.42	18,0		2.57	103			 		SAMPling DAW-5				
14:38	5.91	18,9		2.56	97					17:45 Stopped				
14:42	5,95	20.0		2.58	57			,		only collected				
14 46	5.95	19.8		2.50	96					VUCS, PCBS, SVOUS				
14:50		19.7		2.57	99					will continue to morrow.				
14:55		,		2,55	102/					18.94 after Sampling				
15:00	. 1	1 . 1		2.58	45			·		vocs, pcbs, svocs Sulfate				
15:05	5.86	70,7		2,57	90	<u> </u>								
15:10	5.83	20.9		2.55	11			ļl	*	8/10/00 DTW 18.54 FT Defore sampling				
15:15	5.83	20.8		2.58	12			i		Defore sampling				
15:20	5.85	20,4		2.56	6					- Later				
8/10/	100	7:45 A.M.	beg	ian .	SAMP	ling !	DMU-	5 for	Metal	15, CN, Wet Chen 250ML				
	-	A,M.			1 [0]	ω / α	4c - ~ [
			,		Pe	VIA	inuts	f _	*	8/10/00 DTW 21.300 after Stroiping				

	General Information ect Name: BASF RIVErview Project Number: 38,08 E06 = 16.04 (ULS)												
Project Na	me: BA	ISF R	Ivervieu	U	Project N	umber:	38,08E	06314.	04 L	URS			
Location:	\mathcal{R}_{i}	jer VIE	EW, R	11	Field Pen		WEC						
Well ID: S	MW-	8/99	Cont/ Diameter:	GS 2"	PVC		Start Time	e: (0	:55				
Weather:	Sunn	y 80°	,	Date:	8/2/0	2/2/00 End Time: 12:00							
Pump	•	Peristaltic				Tubing:	1/4"ID HE	RE /	TYGON	·			
			· .	Fleid 8	Monitorine	Data and	Paramters						
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General			
Units	-log[H [*]]	@ /°F		nslem.	NTV	%		ml/min	ft (BTOC)	Intake set (5.6			
T _{start} : 10:55	7.65	24.3°		5.94	78		,		3.10	Egal purged			
11:00	7.69	223°		4.05	67					4.62 OTW after sampling			
11:02	7.70	22.10		5,94	60								
11:05		21.6°		5.86	75								
11:08	7.65	22.1°		5.78	78								
							-						
						<u> </u>							
	,		! 										
							:						
			·										
									<u> </u>				
·								,					
								,		. :			

		Sampl	es Collect	ed (Parame	eters and l	reseva	tions)			
	Check	Analysis (Circle)	Container	Container Volume	Amount	Hold Time	Filtered?	Pe	rsevative	
-	here		Туре	(mL)	7 WINOGIN	(Days)	(Type)	Volume	Туре	рН
4-4	Ш	GN - Nitrite, BOD	Plastic	500		<2	No		-	<u> </u>
	Ш	GA - COD, TOC, NH, TKN, NPN		500	<u> </u>	<28	No	10 Drops		<2
		MA - Total Metals	Plastic	500		<28	No	5ml	HNO ₃	<2
*****		MAD - Dissolved Metals	Plastic	500		<28	Yes	5ml	HNO ₃	<2
-		MD - Dissolved Metals	Plastic	500		<1	No	5ml	HNO ₃	<2
1	ΙH	POV - VOC 8260+	Glass	40		<14	No	5 Drops	HCI	<2
		POV - VOC BTEX	Glass	40		<14	No	5 Drops	HCI	<2
	ľΩ	ON - PCB/Pest	Amber	1000		<7	No		NaOH or	5-9
						_	<u> </u>		H₂SO₄	<u> </u>
		OB - Basic Extract	Amber	1000		<7	No	-	-	
		OA - Acidic Extract	Amber	1000		<7	No	-	-	<u> </u>
l san l										
į .								 		<u> </u>
ا الاسد	·					ļ 				<u> </u>
Į										
(······································					-
	:				· · · · · · · · · · · · · · · · · · ·					-
:					·····		· · · · · · · · · · · · · · · · · · ·	-		
 : :	Ì									
7		· l						·		\square
	·		S	hipment F	tecord					
- (Analytic	al Lab:		· <u> </u>		COC N	umber:		-	
	Method	of Shipment:				Shipme	ent Date:			
			Other	Notes and	Commen	ts				
-		· · · · · · · · · · · · · · · · · · ·	- 1101			- <u>-</u>				
									·	
_ [····	.						
; 	<u> </u>			·					· 	
-										
l										ļ

<u> </u>					Genera	Informatio	on .								
Project Na	Project Name: BASE RIVEYVILW Project Number: 38-08E06216.04 (URS)														
Location:			WILL												
Well ID:	SMW-	3	Cont/ Diameter:	GS	PVC	۵"	Start Time	e:							
Weather:				Date: 8	14/0	0	End Time	:							
Pump	Туре:	Peristaltion	<u>) </u>			Tubing: 1/4"ID HDPE									
Field Monitoring Data and Paramters Time pH Temp DO Cond. Turbid. TDS ORP Rate DTW General															
Time	рН	Temp	DO	Cond.	, 				DTW	General					
Units	-log[H*]	°C/°F		3		%		ml/min	ft (BTOC)						
Tatani/4'5	-								5.00	intokee 8.0'					
14:55	7.40	22.8		687	254										
15:00	7.32	21.1		6.02	14										
15:03	7.24	21.1		5,42	199										
15:08	7.15	21.0		5.09	8				·						
15211	7.14	21-0		4.98	7		<u></u>								
15-13	7,13	21.0		4.92	7										
15219	7.09	21.2		4.90	5										
17:14										dryp intoke					
		-													
16:00				!			;		6.72	intaken 80					
	·			5,											
·										,					
							_								
`															

			Low F	low Gro		ter Samp il Informati		ction Lo	og	
Project N	ame: D	nara	Rivery	<i>i.a.</i>)	7			NOU	· \\	(URS)
				<u>ILW</u>	1			··· ·	p. 04	(UPS)
Location:	KIVER	VILU	Cont/		Field Per		1	JM		
Well ID:	SMW.	-1	Diameter:	GS	PVC	211	Start Tim	ie: 		
Weather:				Date:	8/15		End Time) :		
Pump	Туре: (Peristalti	3			Tubing:	1/4"ID H	OPE		
				Field	Monitorin	g Data and	Paramter	R		
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} Dh									7,22	intake at 11.0 i075 literlain
11:08	8.66	22.9		9.4	10					:075 liter/min
11:15	8.69	20.4		9.32	6					•
11:20	8.63	20.5		8.76						, 125 liter min
11:24	8.51	20.7		8.18	2					
11:29	8,29	209		7.49						<u> </u>
11:33	8.11	20.9		7.09	3					
11:30	7.99	21.0		7.99	4					
11:43	742	21.1		695	112					<u> </u>
11:48	7.96	کا لک		7.00	6					
11:54	00.8	21.7		7.હ5	G					
12:01	8.69	22.6		7,13	6					
	ı		-			_				
	1			, i						
				, .						
						·				·

	General Information Toject Name: BASF RIVERVILW Project Number: 38,08 E06 216.04 / URS													
Project Na	ame: £	BASF	River	rview		lumber:	78.0	8E06	216.0	4 (URS)				
Location:			ew,M		Field Per	sonal:	Heidi	Fred	erick	S/Pete Swanson				
Well ID:	MW	-H	Cont/ Diameter:	GS _.	PVC)	Start Tim		0:00					
Weather:	OVER	cast	760	Date:	8/15	100	End Time	e:	12:5	5				
		Peristalti	<u> </u>			Tubing:	1/4"ID H	DPE 14	190N					
				Field	Wanitarin	a Dota and	Danamtan	· · · · · ·						
Time	рН	Temp	DO	Cond.	Turbid.	g Data and TDS	ORP	Rate	DTW	General				
Units	-log[H ⁺]	°C/°F		#		11%		ml/min	ft (BTOC)	TD=17.92 1001=1,29991				
T _{start} : _{10:05}	9.36	第15.6		28,4	3	3		\$ 250	9.80	Set intake at				
10:08	9.07	16.1		19.4	78	78								
10:11	8.89	15.4		12.3	-2	-2				10:45 Deyan's				
10:14	8.72	15.8		12.7	-1	-1				17.62++				
10:18	8.66	16.1		13,9	-2	-2			11.60	DTW after SAMDING. VOCS, netals, Sulfai				
10:21	8.61	16.2		14.6	-み	-2				<i> </i>				
10:25	8.55	15.9		14.9	-2	-2				purged Igalle				
10:28	8.54	16.0		15.5	-2	-2				·				
10 31	8.54	16.1		15.8	-5	-5								
10:34	854	16.4		16.7	-2	-2								
10:39	8.55	16.9		16.6	-5	-5								
10:42	8.54	16.9		16,5	·2	-2								
	ı													
						:								
				\		·			,					
								-						

					Genera	Information	วก			
Project Na	ıme: 🏻 🖰	ASF	River	view	Project N	umber:	38.08	E063	16.0	4 (URS)
Location:			UMI		Field Per		Heio	li Fr.	eder	icks
Well ID:	MW		Cont/ Diameter:	GS	PVC		Start Time	e: <i>10</i>	18	
Weather:	OVITA			Date: 6	3/10/0	0	End Time		25	
Pump	Type: (Peristaltic				Tubing:	1/4"ID HE			
				Elold I	fon Hosin	n Data and				
Time	pН	Temp	DO	Cond.	Turbid.	Data and	ORP	Rate	DTW	General
Units	-log[H ⁺]	C/F		MS/cm	· · · · · · · · · · · · · · · · · · ·	%		ml/min	ft (BTOC)	TO 8.5 0.39 = 1 Volom
T _{start} : 0:18	7.6	2100		2.7	15				6.04	flowrate
16.21	7.3	20°C		26	out of range					250 ML Per Minute
10:25	7,2	20°C		2.6	Tire					
10:28	7,2	20°C		2,7	111					purged Igallon
10:32		20°C		2.8	i					K10:35 began SAMpling
										set intake
										11:17 AM
										uset intake
			·							
										DTW after sampling - 8.05 ft
										-8.05 ft
,			·							·
				·			·			
		·								

Project Name: BASE R. ver v Location: R. ver v. ew M. Well ID: 5 MW-8 Cost Weather: Overeast Cost 50-60 Pump Type: Peristaltic Time pH Temp DC Units -log[H*] Cost Tstart: 14:44 6.55 20.7 14:45 6.76 20.7 14:45 6.75 20.6 15:05 4.75 19.6	eter: 2 ^{GS}	Field Per		IE C			(urs)						
Weather: 0 Jereast Cost 50-60 Pump Type: Peristaltic Time pH Temp DC Units -log[H*] Co*F Tstart: 14:44 6.55 20.7 14:45 6.76 20.7	eter: 2 ^{GS}	Pvo	sonal: ω	T	9 : ,								
Weather: Outreast Cost 50-60 Pump Type: Peristaltic Time pH Temp DC Units log[H*] Co*F Temp DC Tetart: 14:44 6:55 20:7 4:45 6:76 20:7 4:45 6:75 20:6 20:7 20:7 20:7 20:7 20:7 20:7 20:7 20:7 20:7 20:7 20:7 20:7 20:7 20:7 20:7	1.			Start Time	9: ,	W _R (·							
Weather: Out For God Pump Type: Peristaltic Time pH Temp DC Units -log[H*] Co*F Temp DC Tstart: [4:44 6.55 20.7 44.4 40.7 40.7 44.4 40.7 40.7 40.7 44.4 40.7 </td <td>1.</td> <td>13/00</td> <td colspan="8"></td>	1.	13/00											
Pump Type: Peristaltic Time pH Temp DC Units -log[H*] ©°F Tstart: 14:44 6.55 20.7 14:44 6.76 20.7 14:45 6.75 20.6		, , - , -	3/00 End Time: 15:09										
Units -log[H'] ©°F Tstart: 14:44 6.55 20.7 14:44 6.76 20.7 14:45 6.75 20.6			Tubing:	1/4"ID Pi E	PE TY	900							
Units -log[H*] ©°F Tstart: 14:44 6.55 20.7 14:44 6.76 20.7 14:45 6.75 20.6	Field	Monitorin	g Data and										
Total: 14:44 6.55 20.7 14:44 6.55 20.7 14:45 6.76 20.7		Turbid.	TDS	ORP	Rate	DTW	General						
14:55 6.76 20.7	ms/cm	NTV	%		ml/min	ft (BTOC)							
14:59 6.75 20.6	3.02	73				3.96	1 vol = ,35						
	2.84	76		<u> </u>			1 vol = 135 intake set@ 5.0'						
15105 1175 1910	2.85	13	<u> </u>										
13.07 4 3 170	288	69					2.0-2,5 gol remov						
15:10			<u> </u>		ļ		dry at intake						
8:15						6.02	intake set@ 6.80						
8155			<u> </u>				well dage intete						
				<u> </u>									
11:45						4,58	intoke @ 7.10						
11:57			-	 		ļ	dry@ intake						
13:34		<u> </u>				7.10	inteke at						
13.59						1	nell dreintek						
9:12 720 HC 21.20	2.78	79	<u> </u>	· .	<u> </u>	4.0	intake sete C.O						
9:26 7.19 20.6	2.57	79	<u> </u>				.35 Ivolune O. 6 vol. purged						
4:30 7.19 20.7°													
9:33 7.19 20.90	2.57	79	<u> </u>	<u> </u>			:						

10:17

@ Completion 6.721

	General Information oject Name: BASF R. vernow Project Number: 38.08806216.04 (URS) ocation: R. vernow, M. Field Personal: WRC												
Project Na	me: BA	SFR	verno	ių.	Project N	umber:	38.0	8RO6:	216.04	(URS)			
Location:	Rive	ernew	, M.		Field Pers	sonal:	WRC						
Well ID:5			Cont/ Diameter:	GS	©	2"	Start Time	: 17	134				
Weather:				Date:	8/3/00)	End Time:	17	152				
Pump	Type: (Peristaltic				Tubing:	1/4"ID MB	PE TY	904				
	-			=- 11 =									
Time	ρН	' Temp	DO	Cond.	Turbid.	Data and TDS	ORP	Rate	DTW	General			
	1.		50	3%	ich		URP						
Units	-log[H*]	© °F		210	NTU	%		ml/min	ft (BTOC)	466 BOW			
T _{start} :17:34	6,26	20.2		5.54	69				4.48	.83 = 1 vol.			
17:39	6.25	19.6		5°.45°	10					intake set at			
17:43	6.17	19.7		5.42	10'					भुः हार			
17:48	6.18	19.2		5.37	10			<u> </u>					
17:52	6.14	19.0		5.14	٦٥.					1.15 gal removed			
18:04									5,50				
10:37					·				4.56	Pump intoke 9 7.50			
				:									
										·			
					,								
										·			
		<u> </u>					-		1				

				· · · · · ·	Genera	Informatio	n			1
Project Na	me: B	ASF 1	Rivervic	w	Project N			8 RO 61	216.09	(urs)
Location:	R.	ver Vien	, Mi		Field Per	sonal: (JEC			
Well ID:	SMU	- 7	Cont/ Diameter:	GS.	(VC)	a"	Start Time	^{3:} 16	:04	
Weather:				Date: <	8/3/00)	End Time	16	123	
Pump	Туре: (Peristaltic		- <u>.</u>		Tubing:	1/4"ID HD	PE Ty	<u> 104</u>	
		-:		Field I	Monitorine	Data and I	Paramters		·	
Time	рН	' Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	© °F			NTV	%		ml/min	ft (BTOC)	
T _{start} :/6.04	7.18	22.5		2,05	60				3.74	1.03 = va
16:14	7.18	21.2	<u></u>	1.93	69					1
16:23	7.07	20.9	<u> </u>	191	69					1/2-1.0921 ramesed
	i					_	_			-
17:00									6,5	:
	,									
9:28									6.20	Pump Intake @ 6.20
10:23										Pump dry @ inteke
					·				,	
12:14									8.12	intotre at 9.50
							,			
							,			
			· -							
,		1					,			

			* *		Genera	I informatio	n			
Project Na	me: B	ASF 1	Rivery	(ieu)	Project N	umber: 3	8-08E	0621	6.04	(URS)
Location:			W, M		Field Pers					
Well ID: 5			Cont/ Diameter:	GS	(v)	۵1'	Start Time): 	<u>,</u>	
Weather:				Date: 8	17/00		End Time	•		
Pump	Туре: (Peristaltie				Tubing:	1/4"ID HD	PE		
			-	Field I	Monitorine	Data and	Paramters		<u> </u>	
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} :										
13:35									4.52	intake@G.52
13137	8.07	26		4,84	75					
13:40	8:10	230		4.80	78.		·			
13143	8.02	22.7		5,28	78					
13:45	800	<i>2</i> 2,2		5,3/	78					
13:49	7.99	२२. ०	·	539	78					remark
,			Abando	n sam	ples					remach
17/03									5.52	intake at 8.5
			:							
				_						11 - 200
_ 	<u></u>	ļ. 					,			
		1		·	:					

					Genera	I Informatio	n			
Project Na	ime: $oldsymbol{\mathcal{B}}_i$	ASF7	Rivery	iew	Project N	umber:	8-086	EN621	16.04	(LURS)
Location:			MI		Field Per		IEC			
Well ID:	SMW	-2	Cont/ Diameter:	GS	€	۵"	Start Time	e: 		
Weather:	·		. 	Date: 8	8/8/00		End Time	:		
Pump	Type: (Peristaltic				Tubing:	1/4"ID HE	PE		
				- Ciald 0	Non Honing	- Data and I	Danamta ar			
Time	pН	Temp	DO	Cond.	Turbid.	Data and I	ORP	Rate	DTW	General
Units	-log[H*]	°C/°F		000.		%		ml/min	ft (BTOC)	
T _{start} :	•								666	intakee 10.5
14126	804	22.1	<u> </u>	120	84					
14:29	282	19.9		122	78			·		
14:31	7.70	197		121	90					
14:36	7.72	20.5		12.0	79					
14:39	7.72	20,5		12.0	78					
14:44	7.71	20.5		11.9	79					
										well dry @ 18:00 all URS sumplex Collected. Mp tacking
										Collected. M.P. tacking Several containers
								· · · · · · · · · · · · · · · · · · ·		
								· :		
:									,	
										
										
										,

					Genera	I Informatio	n			
Project Na	ime: P	SASF	River	view	Project N	lumber:	38.68	8E063	16.04	(URS)
Location:	Ri	ilk V il	ew, M	エ	Field Per	sonal:	Heidi	Fre	deric	K5
Well ID:	MW		Cont/ Diameter:	GS	PVC		Start Time	e:) [5 12	
Weather:	Sur	ny -	790	Date:	8/8	100	End Time	: 15	1:55	
Pump	Type: (Peristaltic				Tubing:	1/4"ID HD	DE Tyg	ON	
				Fiold P	#onitorio	g Data and				
Time	рH	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	°C/°F				%		ml/min	ft (BTOC)	9.41 TO vol.
T _{start} : 15/12	10.21	21.2		30.9	94				7.50	Intake at 8.00
15:15	10.66	20,5		32,0	95					
15.18	11.00	20.4		32.4	93					
15:21	11.11	20,2		32,5	93				·	
15:14	11.34	20,0		32.2	45					
15:29	11,58	19,90		32,0	20					
15:32	11.59	20.1		32.0	60					
E:34	11.52	20.2		32.2	9					purged one gairon
15:40	11.60			323	14					per pete we
					<u>-</u>					1.25 gallons
										purged
			floo	u ra	te	Less	Ma	N		Collecteda
	_		25	OML	pe	Mir	rute	-		duplicate
										Sample
										labeled
					l					MW-DO
										4.40 DTW
								,		after sampling
										4.40 DTW after Sampling MP M5/M5(
				·		*	<u> </u>	_	17	:00 SAMPIAS

/7:4501/03/2000 11:42 AM

					Genera	Informatio	n			
Project Na	me: B	ASF	River	ieu	Project N					(URS)
Location:	Ric	Ilrvil	w,M	I	Field Per	sonal:	Heidi	Folo	levict	S
Well ID:	5B-	1	Cont/ Diameter:	GS	PVC		Start Time	e: //	120	
Weather:	Sur	my -	790	Date:	8/8/0	0	End Time	: 12	1:10	·.
Pump	Type: 矣	Peristaltic				Tubing:	1/4"ID HD	PE TY	gon	
	TOU			±3%	± 10%	g Data and	Paramtari			
Time	pH	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	I volus General
Units	-log[H*]	౷ఄ౯		HSen		%		ml/min	ft (BTOC)	\$10 to purge
T _{start} ://:20		17.7		16.6	95				4.68	Intake at 11.8ft
11:29	7.46	19.5	:	14.3	95			·		1galspurged
11:30	7.82	18:7		142	95			·		Igalspurged Tatal depth of well 114
11:34	7.91	18.3		15.9	95					well 1144
11:38	8.11	21.0		15.1	95					
1141	8.19	23:4		15.2	95					Dry Dry
				_		n				13:20 sampled
										According to MOEL of MAR SAMPLE
			flow	rate	145	s tha	Nã	SOML	Der	MINUTES
										4.62 DTW
										SAMPling
								_		
				;						
					·			·		
						,				
								†		
L	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ			L	<u> </u>		ــــــــــــــــــــــــــــــــــــــ		

....

					Genera	I Informatio	n			
Project Na	me: BA	4SF R	.ver via		Project N	umber:	38-08	3E060	216.6	04 (URS)
Location:	Rive	rvieu),41		Field Pers		EC.			
Well ID:	Dmw		Cont/ Diameter:	GS	PVĈ	۵"	Start Time	e:		
Weather:				Date:	8/9/00		End Time	:		
Pump	Туре: (Peristaltic			• . (Tubing:	1/4"ID HE	PE		
	· · ·			Elata s	Monito-i-	. Data ===-	Jarameta			
Time	pН	Temp	DO	Cond.	Turbid.	Data and I	ORP	Rate	DTW	General
Units	-log[H*]	°C/°F	<u> </u>			%	-, 11	ml/min	ft (BTOC)	Oshidi
T _{start} :									8.60	intoker 255
13:47	7.19	20.3		3,49	37					
13:51	7.02	195		344	54					
13:56	7.00	20,3	ļ. 	3.42	63					
14:00	7.03	210		3.32	55					
14:03	6,98	19.8		3.46	10					
14:14	6,98	20.2		3.43	10					
14:20	6.92	20,3		3.46	10					
14.25	6.96	20.0	· ·	3.45	10					
14:30	6,95	20.6		3.46	9					
	:			:						
·										
										

					Genera	l Informatio	n			
Project Na	me: D	BF P	ivervi	ew)	Project N			5062	16.04	(LURS)
Location:			MI		Field Pers		EC			
Well ID:	SB-3		Cont/ Diameter:	GS	PVC	4''	Start Time	9: 	· .	
Weather:				Date: 8	19/00		End Time	:		
Pump	Type:	Peristaltic)			Tubing:	1/4"ID HD	PE	·	·
				Field &	Aonitorino	Data and F	Paramters			· - · · · · · · · · · · · · · · · · · ·
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} q!/7								,	4.68	intoke@8.0
9:28	9.83	212	·	35/	86					· · · · · · · · · · · · · · · · · · ·
9:32	10.8	19.4		37.6	85					
9:37	9.43	19.7		36.9	85					
9:41	986	19.6		35.9	86					
9:46	9.19	19.8		352	84					·
· .			, , 							
										· ·
									<u> </u>	
· 					i					
	,					·				
		<u>.</u>				:				
- -	· · · · · · · · · · · · · · · · · · ·	:	: :							· · · · ·
<u>.</u>			·							<u> </u>
 								·		
·										

					Genera	I Informatio	n			i i
Project Na	me: L	3ASF	River	lieu	Project N	lumber: 3	18.08	E062	16.04	(URS)
Location:	River	rview	MI		Field Per	sonal: He	idi 1	Frede	ericl	Cs
Well ID:		_ /	Cont/ Diameter:	GS	PVC)	Start Tim	e: /	7 · 27	,
Weather:			50	Date: &	3/11/0	00	End Time	: 14:4	40 u	Monday to finis
Pump		Peristaltic	_			Tubing:	1/4"ID HE	PE /L	gon	Sampli
·	· · ·			Field R	Aonitorin	g Data and	Paramter		9070	
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	© °F		MS/CM		%		ml/min	ft (BTOC)	TO 12.6
T _{start} : 12:30	8.91	20.8		.706	28			Less Han asone por ninute	7,996	Set Intaked 25 Ft
12:25	8.40	19.6		.67.1	31					set subster asft
12:30	803	19.4		.685	36				:	
12:36	7.64	20.4		3.66	36	← rea	edjus te	d to	11.5 In	tale 250 ML/
12:45	8.07	18.8		4.69	-10					
12:50	8.23	19.9		4.50	-/0					
12.58	8,50	19.0		7.48	34				*	readjusted
13:05	8.77	195		8.23	326					
13:10	9.03	18.7		8.32	25	,			*	P V V V V V V V V V V V V V V V V V V V
13.15	9.10	18,9		8.36	22				2	2 gallons
13:17	9.20	18.0		8.54	15					
13:21	9.21	18.4		9,20	11					DTW after sampling = 11.66 ft
13:25		1Ž		9.40	21					=11.66 F+
13:30	9.78	18,2		9.40	6					
			,							
	1									
-				•			•		·	

						Information	ou Collec			
Project Na	me: 1	BASF	Rive Will	rview	Project N	umber:	38.	OSE	0621	6.04 LUB)
Location:	Riv	ILIVIL	WIMJ	•	Field Per	sonal: c	Heic	1: 7	Fecler	6.04 LUB)
Well ID:	PZ-	3	Cont/ Diameter:	GS	PVC		Start Time	e: <i>C</i>	1:00	1,07
Weather:	SU	nny	670	Date:	8/11/	00	End Time	: /	1/:15	
Pump	Туре:	Peristaltic				Tubing:	1/4"ID H	PE T	4901	/
				Fleld N	/lonitorin	Data and	Paramters	3 .		
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	(C))F		nS/cm		%		ml/min	ft (BTOC)	TD 10++
T _{start} : 4:00	9,48	19,1		10.50	70				6,02	
9:05	9.49	19.1	·	9.70	17					less than per
9:09	9.41	P.4	·	8.18	m,					minute
9:14	9.37	19.0		7.44	-10					
9:19	9,30	18.9		6.74	12					Intake set at 9 ft
9.23	9.22	18.8		6.27	1					DTW 6.02 ft befor sampling
9.26	9,19	18.7		6.18	70					
9:30	9.11	18.9		5.85	-10					
9:35	9.04	18.9		5.89	2					
9:40	9:00	19.4		5,84	-10					
9:45				5.74	-10	-		·		
9:50	8.99	19.4		5.67	2					
9:55				5.57	3					purged 2.0 gallons
9:58	8.96	19.5		5.44	-10					DTWafter
										purged 2.0 gallows DTW after Sampling 6.40 ft
		 								

Project Nat Location: Well ID:	Ri PZ-	vervi 2	Rivu ILW, I		Project N	ul informati lumber:	38.0	8 E06	216.0	04 (URS)
Well ID:	Ri PZ-	vervi 2	(Cont		Field Per		_,			
						sonal:	Heid	i Fr	eder	ICLS / Grag Meyring
	Sun		Diameter:	GS	PVC)	Start Time		:50	
Weather:		my	67°	Date:	8/11/	08	End Time	91	\$ 0	
Pump	Туре:	Peristalti	<u></u>			Tubing:	1/4"ID HB	PE TY	igoN	
				Field I	Monitorin	g Data and	Paramters			
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	℃°F				%		ml/min	ft (BTOC)	purge 1 w1.60
T. 147:50	6.28	19.0		9.9	70					KHoriba 10
7 55	10.19	18.1		1.32	-6.2				k	Switched Herib
8:00	10.15	17.5		1.28	-83					DTW is 6,21
8:03	10.17	17.6		1,20	-8,5					Flow rate less than 250MG
8:06	10.15	175		.99	-10.0					per Minute
8:10	10,17	17,7		2.2	-100					Intake is set
8:13	10.17	17,9	4	1.16	~10.D					Takal OC
8:16	10.17	[8.0		1.12A	-10.8					1.25 gallons purgud
9:19	10,18	18.0		1.12	-100					
8:22	10.17	17.9		1.19	-10.0					8:40 SAMPliA
				,			,			DTW
		_	· ·			~~~				6.30 after Sampling
										1
							,	······		9:40 endid Sampling
								:		Sampling
					:					

	· · · · ·	•		1044 010		ter Samp			 -	
Project Na	me: /	BASF	River	View	Project N			18E1	2621	6.84 /11R
Location:			w, Pl		Field Per		Hei	di F	rede	6.84 (US) ricls/fete "MP"
Well ID:	MW-	-K	Cont/ Diameter:	GS	PVC)	Start Time	e: /	5:40	"MP"
Weather:	Sun	ny.	850	Date:	8/14	100	End Time	/	7:40	
Pump	Туре:	Peristalti	<u> </u>			Tubing:	1/4"ID HB	PE TY	gon	
			· · · · · · · · · · · · · · · · · · ·	Claid	10-14-4-	a Data and				
Time	pН	Temp	DO	Cond.	Turbid.	g Data and TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C)°F		nSlcm	raibid.	%	010	ml/min	ft (BTOC)	TD=16 BTOC 1 vo 1 = .668als - selling the inta at 15 ft.
T _{stan} 5.40	7.28	19.4		60,3	90				11.90	selling the inta
15:45	8.42	19,2		61.1	85				<u></u>	1 vo 1= . 66gals
15:50	8.73	17.1		61.0	140			: :		
15:53		16.7		60.9	68				ļ	16:00 SAMPling My-K 1 gallon Durg
15:57		16.60		60.9	62					1 gallon Durg
16:00	8.94	16.2		60.9	56			·		
									<u></u>	17:00 MP
							<u> </u>	-, , , , , , , , , , , , , , , , , , , 	- 10	L
								· · · · · · · · · · · · · · · · · · ·	12,244	LDTW after Sampling
								-	 	
						·			<u> </u>	
			<u>.</u>					· · ·		
		<u>.</u>								
									<u> </u>	
										· · · · · · · · · · · · · · · · · · ·
		4								
		<u> </u>							ļ	

Project Nam Location: Well ID: Weather: HUM: A	Riv DMI Sun	Vervio	Conty Diameter:	(I)	Project N Field Per			£062.		(URS)
Well ID:	DMI Sun	N-4	Cont/ / Diameter:	GS		rsonal:	Hu	di F	redais	Tirle
Weather:	Sun	ny	Diameter:	1	PVC)		<u> </u>	~W	1010
		7	Z90			<i></i>	Start Tim	e: //	2:52	2
	уре:	Perietalti	<i>/</i> '\	Date:	8/14	100	End Time): 	15.0	0
		. 0.100010				Tubing:	1/4"ID HE	PE 74	90N	
				Field I	Monitorin	g Data and				
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units -	log[H ⁺]	°C/°F				%		m!/min	ft (BTOC)	DTW -9.49ft TD = 26.15ff
Tetert:/250	7.83	19.9		5.55	99				9.49	set intakeat
2:55	7.17	20.9		5.53	7					1 Volume = 2.64 gallons 2-64 gallons 2-chan 2gallons 40
13.00 4	6.99	9.6		5,58	28					2- Chan 2 gallon 5 40
13:05 6	6.95	19.9		5.59	10					
13:08 6	, 89	19.4	-	5.55	26					13:35 Degain
(3:11)	6.86e	18.1		5.55	41					SAMPling Duw-4
1314 (6.81	18.0		5,58	79					
13:17 6	,.75	17.0		5.58	63.					DIW 23.11 ft, after sampling
13:20 6	.67	17.0		557	51					
13:24 (6.67	16.8		5.56						
13 27 6	6.67	17,2		5.57	50			·		
·						 -	· 			
,				:						
		<u>. </u>							·	
				\ \				:		
				,					,	
						:	,			

	<u>.</u>					ter Samp al Informati				
Project Na	me:	BASE	River	vil u)	Project N	lumber:	38.08	E065	216.04	(URS)
Location:			W, M		Field Per	rsonal:	teidi 1	Geder	icks	
Well ID:	MW	•	Cont/ Diameter:	GS .	PVC		Start Time	e: 8	:45A	M.
Weather:	Overco	-	<u> </u>	Date:	8/14/1	00	End Time		1:10	
Pump	Туре:	Peristaltic		<u>.</u>		Tubing:	1/4"ID HD			
				Field		- Dots and				
Time	pН	Temp	DO	Cond.	Turbid.	g Data and TDS	ORP	Rate	DTW	General
Units	-log[H [†]]	°C/F		n Slcm		%		ml/min	ft (BTOC)	T0=12.6
T _{start} : _X :45								·	8.04	TO=12.6 .73gallons & purge 2350 MLS per monute/Flowra Set Intale at
8:55		18.1		9.8	27					Set Intale at
9:00	9.41	17.8		8.42	39					
9:04	9.38	17.6		8.23						Finishing Pollecting
9:08	9.3	17.5		8.62	ID					SAMPLES FOR MP From Friday BILLIOD BNAS & DCRS
9.11	9.31	17.5		8.65	13				·	8/11/00 BNAS & DCBS
9:15	9.32	17.8		9.15	24					
	9.37	18.8		10,2	45					
9:22	9.39	18.5		9.65	60					
9:25	9.38	18.4		9.71	65					
9:30	9.40	18.6		10.6	45					1.5 gallons
9:33	9.42	18.9		10.8	25					purgled.
9:37	9.45	18.6		10.8	16					Pote Swanson From MP
9:40	9:44	18.6		10.7	//					Bagan Sampling Burs, ACBS at 9:50 A.M.
9.44	9.45	18.9		10.9	11	,				
9:47	9.46	18,8		10.9	10					10:10 URS Started collecting a MS/MSD
				!						a M5/M55
						<u> </u>				SAMPLE From MW-A
				·		<u> </u>			DTu	11.24Ft after

SAMP / Mg for M5/M5[08/02/2000 1:25 PM

Project Name: BASE Riverview Project Number: 3808E0631604/00007													
Project Na	ame: Rt	SF P	GYETY.	er v	T			16 216	OH /on	007			
Location:		ervie			Field Per	sonal: p_0	7° <	mare	~ (1 m)	P) (raig Riley			
Well ID:	SMW		Cont/ Diameter:	GS (PVC) ي	Start Time	: 13	25	r) reiding riay			
Weather:	SUNNY	いんりゃん	mcd,	Date: C	8/23/	 	End Time		:30				
Pump		no Pre				Tubing: (1/4"ID HD			^ ··			
			<u>/ Ge</u>	dowl		Marine Data and Baromton							
Time	рН	Temp'	DO	Field F	Monitoring Turbid.	Data and	Paramters ORP	Rate	DTW	General			
Units	-log[H*]	⊘ °F	ug/L	#S/mm	±107	3/2"	mV	ml/min	ft (BTOC)	Intake set			
T _{start} :			·	- 31	-101	JIL	111 4		(before) 8.62 to	@ 10.5 BTOC 12.20 TD			
13:25	9.81	21.0	17.71	1.90	83.0	7	-302	4250	1 1				
13:28	9.81	19.6	12.26	1.15	88.5	7	-303						
13:31	25.6	æ.o		0.993	64.7	6.3	-294						
13:34	9.69	195	11.48	0.960	58.7	6.1	-99D						
13,37	9.67	19.3	11.20	0.937	58.8	5.9	-281	_					
13:40	<u>ماما. ۹</u>	19.4	10.85	0.933	42.8	5.9	-588			·			
13:43	9.65	19.3	10.92	0.921	42.2	5.8	-788						
13:46	9.63	19.7	10.78	0.917	43.5	5.8	-983			•			
13.49	9.63	19.3	10.83	0.916	41.8	5.7	-788						
13:52	9.60	19.2	982	0.918	ł	5.7	-988		,				
13:55	9 13	196	10.73	0.919	31.2	5.8	-290			1 ± 2.5 ga / purged			
13:58	9.63	19.3	10.75	0.912	ગા.1	5.7	-28G-		14:00	1 ±2.5ga/puroped (SMW-4) Tale Sample			
									15:00	Take duplicate			
	Note:	Mat	er Wa	s br	MO t	M/ SV	force	doc.	Horova	Take duplicate Sample host Combine			
		• •	ge/sai	!	ime.			,					
									8.61-	Tol			
					·			}					

<u></u>	General Information ect Name: BASE Riverview Project Number: 3808E0621604/0007												
Project Na	me: BF	KF I	Riverv	,ew	Project N	umber: 38	ρδΕC	16216	04/0	0007			
Location:		اودين	, m)		Field Per	sonal: Q	ete Su	<i>شاب20</i>	Wb) C	raig Riley (urs)			
Well ID:	5MW	- 25	Cont/ Diameter:	GS	PVC)	Start Time	915	10				
Weather:	775444 2000A	700c	1 biscib	Date: 9	8/23/	00	End Time	11:0	0				
Pump	Type:	Peristaltion) geo	pom p	2	Tubing:	114"ID HD	PE).	490	Λ			
				Field N	Monitoring	Data and F	aramters						
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General			
Units	-log[H ⁺]	% /°F		m5/cm ±3%	± 101	%		ml/min	ft (BTOC)	intake set © 12' BTOC			
T _{start} :									2:49 18 Professor)	14.4000			
9:51 8.55 16.7 5.71 5													
9:55	8.71	16,2											
9:58	8.83	16.1		5.25	5								
10:01	8.87	16.2		4.92	3			-	:				
10:05	8.90	16.2		4.79	3								
10:08	8.93	16,2		4.68	3								
10:11	8.94	16.5		4.61	3					± 1.75 gal purged			
10-14	8.45	16.5		4.55	3				10:90	+ 1.75 gal purged Take sample			
	Viale	` ` \ \ -	٠		\.	Λ.		- الم -					
	14014	7		25 110) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	own to	s Clea	7111	nogr				
		CO	W HOLY	101	house	120mh			5.92	tor			
					,								
										·			

<u></u>	· ·		LOWF	iow Gre		ter Samp		CHOII LC		.
Project Na	me: R	KE F	ivervi e	· · ·	Project N			Q(2) I	04/0	0no7
Location:		<u>ron</u> Cyrew			Field Per					Craig Rilay Lurs)
Well ID:			Cont/ Diameter:	GS	PVC))))	Start Tim			ciary kiny cons
Weather	Partlys	בתי לשימת		Date: &	123/0		End Time			
Pump	~	Peristalti		opump		Tubing: (1/4"ID H	OPE .	tygor	
						·			730	
Time	рH	Temp	DO	Field I	Monitoring Turbid.	Data and TDS	ORP	Rate	DTW	General
Units	-log[H*]	⊕ °F		m5/cm ± 31	±107.	%		ml/min	ft (BTOC)	intake set
T _{atarie} z:00		17.1		7.77	Ø			250	(0.1021c	
8:05	8.98	16.2		7.%	0					
80 B	જ.૧૪	16.3		7.78	Ø			·		
8:11	8.97	16.4		7.57	Ø					
8:15	8.૧૨	16.5		7.12	Ø					
8:20	8.88	16.5		7.01	0					± 1.75 gal
હ.'ઋ	8.85	16.5		7.07	Ø				&:3D	Take sample
				_						
	Note	: W	ster 1	tapi	prom	of a	lear	thro	ماور	
		<u></u>	1	U			elsar	ł	1 ()	led
			SUHO	<i>کرد</i> ه	dor	through	at s	ample	Queae-	h'na O
·						J		\.		
	, 1 									
				\	:					-
								·		

					Genera	l Informatio		LION LO	-	
Project Na	$^{\text{ime:}}$ $^{\text{Bf}}$	75F	Riveru	iew	Project N	umber: 3	808 E	0621	604	loono7
Location:			Cont/		Field Per					, Craia Riby lue
Well ID:	IMU	5-13	Diameter:	GS (PVC	<u>a"</u>	Start Time	: 12	: 35	J ,
Weather:	wag mi	ug' vol		Date: 8	199/0	Ö	End Time	!	5:00	
Pump	Type: (Peristalti	Geop	ump à	<u> </u>	Tubing:	1/4"ID HD	PE	4490	on
•	1			Field N	Monitoring	Data and I	Paramters	.		
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	© rF		m5/cm ±37.	± 107.	%		ml/min	ft (BTOC)	6 16.5
T _{start} :									before 3-67T	
12:40	8.90	16.5		36.9	40					
12:45				37.2	38	·				
12:50	9,53	15.4		37.3	5					
12:54	9.62	15.1		37.5	2					
12:57	9.73	15.0		37.7	1		,			
13:01	9,79	15.0		37.9	1					
13:05	9.86	15.0		38.2	Ø	SUNF	ajs.			
13:03	9.89	15.5		38.2	-1					
13:11	9,93			38.5	-1		·			+ 2gal Durged
13:45	9.45	15.8		38.5	-1				13:20	+ 2gal purged Take Sample
		:								
	Note:		er wa					d-foar	Y	
			often ut						1	
		Jot o	ble to	apt	0 h	asho	ce in	VOA	علون	
				0		•	:	: !	11.44	тос
		3								
		: : :								
· .		,						; !		

	General Information Project Name: BASF, Riverview Project Number: 3868E0621604/00007											
Project Na	ıme: BA	15F,	River	ui ew	~~~~			عاالحملا	04/a	0007		
			s Mi), Craig Riley		
Well ID:	SMU	7-33	Diameter:	GS	%	9	Start Time			2. 1		
Weather:	cloud	win w	2 wird 260°F	Date: Q	122/0	00	End Time	10:	40			
	•	Peristaltion	•	Pum)		Tubing	1/4"ID HD	PE +	rgon			
					d Paramters							
Time	pH	Temp	DO	Cond.	ORP	Rate	DTW	General				
Units	log[H*]	O rF	# 31. 1	をない	Turbid.	%		ml/min	ft (BTOC)	intake set		
T _{start} :								₹350	8.09.	HATD		
845		8:15 -	Start Ba Restar	するない。	2,00 7,00	rad to	(Abia					
8:47	8.11	18.8		<i>5</i> .70	49							
8:51	8.04	18.3		4.55	17							
8:55	7.97	18.2		4.48	16				-			
9:00	7.96	18,2		443	13							
9:03	7.95	18.2		4.42	11					+ offer 3cmin		
9:06	7,94	18.2		4,39	9							
9:10	7,92	18.3		4.40	8					+		
9:15	7.92	18.3		4.38	7							
9:20	7.91	183		4.39	G			·	9:20	Stort Samp		
						· .			10:00	Take duplical		
	Note:	Light	ial pu jot ligi	rge h	nater	wasa	lackb	cons		(SmB1230)		
		ound a	1 1 jol	Her t	Hund	ncut P	ride 1	monito	ening			
									wher			
		<u> </u>							SID	TOC		
:												
					- -							

15:20 2.68 19.0 48.2 300+ -turbidity fluctuating drawdown. 6 15:30 8.72 19.9 47.4 300+ -turbidity fluctuating drawdown. 6 15:40 8.72 19.2 46.8 300+ - 11 11 15:45 8.74 18.2 47.1 300+ - turbidity constantly rising 15:50 8.71 18.6 71.1 300+ - 11 16:00 8.76 18.0 47.9 300+ - 11 16:05 8.73 18.0 47.3 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11	Ε							l Informatio			9 	
Coation: R: Very Eway M1 Field Personal: Pele Suggest Canage Field Personal: Pele Suggest Canage	I	Project Na	me: BA	KF R	iverv	iew	Project N	umber: 38	DEC!	30160	0/ 12	0007
Weather: SUNNY and enter Date: (8/2) 1/00 End Time: 14:50							Field Per	sonal: De	te Su	DUSON		raio Riles
Veather: SUNTY Modernte Date: 8/31/00 End Time:	1	Vell ID: ر	MN-	3 2	Cont/		PVC) .	Start Time			2-4
Field Monitoring Data and Parameters Time pH Temp DO Cond. Turbid. TDS ORP Rate DTW General Units Footh? (2) or maken \$\frac{1}{2}\$ tot. \$\frac{1}{2}\$ model \$\frac{1}{2}\$ tot. \$\frac{1}{2}\$ to	1	Veather:	SUNNY	mod	emte,	Date: 🗨	3/21/1	0O	End Time			·
Field Monitoring Data and Parameters Time pH Temp DO Cond. Turbid. TDS ORP Rate DTW General Units Togin! (Or F #31. ±101. % ml/min R(BTOC) intake set **51. ±101. ml/min R(BTOC) intake set **51. ±102. ml/min R(BTOC) intake set **51. ±102. ml/min R(BTOC) intake set **51	Ī	Pump	Туре: (Peristalti	5) C	eopum	60	Tubing: (1/4"ID HD	PE T	Yan	
Time pH Temp DO Cond. Turbid. TDS ORP Rate DTW General units 10g/H1 COrF	F							. Data and I	Paramters		<u>.a.</u>	
Treen: 1.1 14:50 8.00 18.7 45.3 368 45.50 7.8975c 10.20 TD 14:55 8.20 17.7 45.6 273 15:00 8.39 17.3 46.3 212 15:05 8.50 16.9 46.4 220 15:10 8.59 16.9 47.4 300 47.4 300 15:30 8.72 18.9 47.4 300	\vdash	Time	рН	Temp	DO		·				DTW	General
Table: \$1.1 14:50 8.00 18.7 45.3 368 45.50 7.8970c 10.20 TD 14:55 8.20 17.7 45.60 273 15:00 8.39 17.3 46.3 212 15:05 8.50 16.9 46.4 220 15:10 8.59 16.9 47.4 300 47.4 300 15:30 8.72 18.9 47.4 300+ - turbulity fluctuating drawadown of drawa	ľ	Units	-log[H*]	€y°F			\$ 10°L	%		ml/min	ft (BTOC)	
14:50 8.00 18.7 45.3 368 250 7.8972 10:00 10 14:55 8.20 17.7 45.6 273 15:00 8.39 17.3 46.3 212 15:05 8.50 16.9 46.4 220 15:10 8.59 16.9 47.4 300 15:20 2.69 18.0 48.2 300+ -turbidity fluctuating drawdown drawdown droppod bell 15:30 8.72 18.9 47.4 300+ -turbidity fluctuating droppod bell 15:40 8.72 19.2 46.8 300+ - 11 11 15:45 8.74 18.2 47.1 300+ - turbidity constantly rising 15:50 8.71 18.6 71.1 300+ - 11 16:00 8.76 18.0 47.9 300+ - 11 16:00 8.73 18.0 47.3 300+ - 11 16:10 8.73 18.0 47.3 300+ - 11	1	start•	Tul									
15:00 839 17.3 46.3 212 15:05 8.50 16.9 464 220 15:10 8.59 16.8 47.4 300 15:20 2.68 18.0 48.2 300+ -turbidity fluctuating drawdown. 15:30 8.72 18.9 47.4 300+ - turbidity fluctuating drawdown. 15:40 8.72 19.2 46.8 300+ - 11 15:45 8.74 18.2 47.1 300+ - turbidity fluctuating intak 15:50 8.71 18.6 71.1 300+ - turbidity constantly rising 15:50 8.71 18.6 71.1 300+ - 11 16:00 8.76 18.0 47.9 300+ - 11 16:00 8.73 18.0 47.3 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11		14:50	8.00	18.7		45,3	368			<i>42</i> 50	7.897	070C
15:05 8.50 16.9 464 220 15:10 8.59 16.8 47.4 300 ±1.3ga 1 purge 15:20 2.63 i3.0 48.2 300+ — turbidity fluctuating drawdown. 6 15:30 8.72 18.9 47.4 300+ — turbidity fluctuating dropped bell 15:40 8.72 19.2 46.8 300+ — 11 11 15:45 8.74 18.2 47.1 300+ — turbidity constantly rising 15:50 8.71 18.6 71.1 300+ — turbidity constantly rising 16:05 8.73 i8.0 47.8 300+ — 11 16:05 8.73 i8.0 47.8 300+ — 11 16:15 Start snaple Notes: Noter is black, Well run below intate, Recharging Very Slow		14:55	8.20	17.7		45.6	273					
15:10 8:59 16.8 47.4 300 #1.3gal purge 15:20 2.68 18.0 48.2 300+ - turbidity fluctuating drawdown. 6 drawdown. 6 drawdown. 6 dropped bell 15:30 8.72 18.9 47.4 300+ - turbidity fluctuating drawdown. 6 dropped bell 15:40 8.72 19.2 46.8 300+ - 11 11 11 11 11 11 11 11 11 11 11 11 1	1	5:00	839	17.3		46.3	ala					
15:20 2.68 18.0 48.2 300+ -turbidity fluctuating drawdown. 6 15:30 8.72 18.9 47.4 300+ -turbidity fluctuating drawdown. 6 15:40 8.72 19.2 46.8 300+ - 11 11 15:45 8.74 18.2 47.1 300+ - turbidity constantly rising 15:50 8.71 18.6 71.1 300+ - 11 16:05 8.73 18.0 47.3 300+ - 11 16:05 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11 16:10 8.73 18.0 47.8 300+ - 11	1	5:05	8.50	16.9		464	220					
15:40 8.72 19.2 46.8 300t - 11 11 15:40 8.72 19.2 46.8 300t - 11 11 15:45 8.74 18.2 47.1 300t - turbidity constantly rising 15:50 8.71 18.6 71.1 300t - 11 16:00 8.76 18.0 47.9 300t - 11 16:05 8.73 18.0 47.3 30t - 11 16:10 8.73 18.0 47.8 300t - 11 Notes: Water is black, Well run below intate, Recharging Very Slow	L	15:10	3.59	16.8		47.4	300					± 1.39a 1 purged
15:40 8.72 19.2 46.8 300t - 11 11 15:40 8.72 19.2 46.8 300t - 11 11 15:45 8.74 18.2 47.1 300t - turbidity constantly rising 15:50 8.71 18.6 71.1 300t - 11 16:00 8.76 18.0 47.9 300t - 11 16:05 8.73 18.0 47.3 30t - 11 16:10 8.73 18.0 47.8 300t - 11 Notes: Water is black, Well run below intate, Recharging Very Slow	1	5:20	2.63	18.0		48.2	300+	-tun	ytibie	Nuctu	ating	drawdown, Wat
15:45 8.74 18.2 47.1 300t - turbid ty constantly rising 15:50 8.71 18.6 71.1 300t - 1 16:00 8.76 18.0 47.9 300t - 11 16:05 8.73 18.0 47.3 300t - 11 16:10 8.73 18.0 47.8 300t - 11 Notes: Water is black. Well run below intate, Recharging Very Slow	L	15:30	8.72	18.9		47.4	300+	- tu	bidity	fluctur	ating	intake
15:50 9.77 18:6 71.1 300 - 1 16:00 9.76 16:0 47.9 300 - 11 16:05 9.73 18:0 47.3 300 - 11 16:10 8.73 18:0 47.8 300 - 11 16:15-Start snepla Notes: Water is black well run below intate, Recharging Very Slow	L	15:40	8.72	19.2		46.8	300t	•			7	
15:50 9.77 18:6 77.1 300t - 1 16:00 9.76 18:0 47.9 300t - 11 16:05 9.73 18:0 47.3 300t - 11 16:15 - Start sneple Notes: Water is black well run below intate, Recharging very slow				18.2		47.1	300°	- +	ncpidi	ty co	nstant	-ly rising
16:05 8.73 18.0 47.3 30t 11 16:10 8.73 18.0 47.8 300t - 11 Notes: Water is black. Well run below intake, Recharging Very Sicul	1	75:50	3.71	18.6		77.1	30ct					, and the second
16:05 8.73 18.0 47.3 30t 11 16:10 8.73 18.0 47.8 300t - 11 16:15 Start sample Notes: Water is black. Well run below intake, Recharging Very Slow		6:00	9.76			47.9	300		11			
Notes: Water is black. Well run below intate, Recharging	L	6:05	8.73	18.0		47.3	300 ^t		11	–		
very slaw	L	16:10	8.73	14.0		47.8	300°		/1		16.15	- Start suple
			Notes	: Wo			e Wel	run	below	intab	e. Rec	anging
17:00 Deposed type & (o" to rollent Motakining & car-	L				' ,	slow						7
The state of the s	_	·	17	:00 Dr	opped	tube ?	<u>'ی</u> ی	to co	lect	Metak	NHZI	· CN-
	L											
]											

	General Information Project Name: BASF-Riverview Project Number: 3808 E0631604/0007													
Project Na	me: BA	SF-R	JUETUJE	,w	1					7				
Location:					il					ig Riley				
Well ID:	SMW	-91	Cont/ Diameter:	GS	€ VC	9"	Start Tim	e: 1911	15	13:20				
Weather:	ουυλί Σουυλί	Modera ~70°	te F	Date:	8/211	4	End Time		_	·				
1		Peristaltion	-	pinp a	7	Tubing:	1/4"ID HE	OPE)	Haa					
						g Data and I	Paramter							
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General				
Units	-log[H*]	۩rF		m5/cm	±101.	%		ml/min	ft (BTOC)	10.39 TD				
T _{start} :	_							≤ 250	5.52	intake set @				
974	1147	15.7		384	8/			₹350	\times					
978	1490/	1357	X	37.5	/ 5_		X	>		\times				
19:20	8.79	19.4		10.0	1									
19:22	જ.4 જ	189		9.4	3									
13:00	8.19	18.2		9.2	0									
13:05	7,94	18.2		9.2	-2									
13:10	7.79	18.5		9.1	·-2	,			_	± 1.3 gal purged				
13:13	7.68	18.4		9.1	<i>-</i> ک									
13:16	7.58	183		8.40	ļ									
13:30		18.3		839	Ģ			·		± 2 gal purised				
13:24	7,48	18.3		836	-3					13:30 sampled Well				
									l	Well				
		Note	لما :	ود ر	lear	through	nout	Dura	elsan	olo				
		:							5.58	l'				
									Offic					
·														
									•	•				

. [General Information Project Number: 3808 E0601604 / 00007												
Project	Name: R	45F-	River	wiew	Project I	Number: 38	308 EO	62060	4/000	70			
Location		Single Section	ELN: 6m	, WI	Field Pe	rsonal: Pe	te Su	anso	, Cr	aig Riley			
Well ID:	SMW	7-9 <u>0</u>	Cont/ Diameter:	GS	PVC	<u>ノョ"</u>	Start Tim	e: 9:1	5	3 /			
Weathe	South ?	· mode	rate	Date: 5	3/21/	100	End Time	: 10:	30				
Pun	np Type: ~	Peristalt	Geo	spump	2_	Tubing:	1/4"ID HI	OPE)	tyo	Jon			
		<u> </u>											
Time	★ i pH	Temp	DO	Cond	Turbid	g Data and TDS	ORP	Rate	DTW	General			
Units	-log[H ⁺]	€ F		Milcm		. %		ml/min	ft (BTOC)	Intake set @			
T _{start} :								4250	9.00	12.31 TD			
9:14	11.47	157		38.4	8								
9:18	11.90	15.7											
4:73	15.05	15.7		39.8	4								
9:27	7 12.13	15.6		41.5	4					± 1 Gal purged			
9:31	13.18	18.5		43.0	4								
9:35	13.21	15.5		44.2	i								
9:38	12.17	عا.15		45.4	1								
9:43	12.19	15.6		46.4	0	!							
9:47	12.17	156		47.0	0	·			9.07 TO	2+galpumph			
						·				9:55 Tock Sample			
:	Note:	Wa	er we	sd	ick b	our -	FOUNT	for		10130 Well			
ļ		dua	tien o	F P	me !	ample	<u>'</u>			complete			
<u> </u>	Note: Water was dark brown formy for 10130 well complete												
								:					

	roject Name: BASF Riverview Project Number: 38.08£06216.04												
Project Na	ime:	RA<	F Pi	Jex Viau	Project N	lumber:	38.0	8E00	6216.	04			
Location:			view,		Field Per					ericles/ Pete			
Well ID:	IM	W-6	Cont/ Diameter:	GS	PVC)	Start Tim		11:10				
Weather:	ra	iny	overces	Date:	8/17/	100	End Time	B:	12:2	0			
Pump	Туре:	Peristalti				Tubing:	1/4"ID H	DPE TU	190N				
	-			Field I	Monitorin	g Data and	Paramter	8					
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General			
Units	-log[H ⁺]	℃¢F		nslen		%		ml/min	ft (BTOC)	set intake a 13ft			
T _{start} : : D	11.03	15.1		41	4			L250	3.40	14.39 TD			
11:15	11.42	14.9		40,3	5								
11:20	11.51	15.1		42.4	2					11:45 Started Sampling			
11:95	11.59	16.0		42.9	2								
11:28	11.64	15.3		44.9	-1				3.90	•			
11:31	11.72	15.4	_	44.9	4					after sampling.			
11:34	11.72	15.6		45.9	2			! 		2 gallons porge			
11:37	11.72	15.9		46.4	2								
11:42	11.72	15.7	1 .	46.8	2			·					
·								:					
	5												
				•									
							_						
			•					·					
	!												
1.							a	I	I				

			Low F	low Gro		ter Samp al Informati		ction Lo	og	
Project Na	ame:	BASI	F RIVE	(Viou)	7	lumber:		2E06	216,0	'/
Location:			W, M J		Field Per					/ Pete Swanson
Well ID:	SMU		Cont/ Diameter:	GS	PVC)	Start Tim		:30	
Weather:	rai	ny		Date:	8/17	100	End Time	»: /	0:00	A.M.
Pump	Туре:	Peristalti				Tubing:	1/4"ID H	OPE (190N	
				Field (Monitorin	g Data and	Paramter	B .		
Time	рН	Temp	DO	Cond.	Turbid.	TIPS	ORP	Rate	DTW	General
Units	-log[H ⁺]	© rF				%		· ml/min	ft (BTOC)	9,28 ft TD
T _{start} 335	12.04	<i>n.</i> 5		63.3	16			3.67		Set Intake @ 8.0ft
8:38	12.13	17.1		64.4	11					8.0 ft gallons to purge I volume - 9 gallor .75 gallons purge
8:41	12.25	17.0		66.3	8					.75 gallons purge
8:45	12.46	17.0		67.8	18					9:05 SAMPING
8 :50	12.48	17.0		67.8	4					
8:55	12.48	16,9		66.8	4					
9:00	12.49	169		6.7.7	3				DTa	3,82ft after sampling
					·					after sing
						·			·	
	,									
						·				· · · · · · · · · · · · · · · · · · ·
				1		:				
				,		· ;				

					Genera	Informatio	n	1.44	e ja saasta as	
Project Na	me: $\mu_{ m V}$	ERVIE	W		Project N	umber: _	3 <u>e - 0</u> 9	3E04	ما أل	.64
			ERVIE	w.	Field Per	sonal: J.	MIE	ECKI	M	_ ABDALLAH
Well ID:	smu	-10	Cont/ Diameter:	GS	PVC	s,,	Start Time): 1		
Weather:	RAIN	1		ع: Date	3/17/0	20	End Time	:		
Pump	Type:	Peristaltic	:			Tubing:	1/4"ID HD	PE		
				Field P	donitoring	g Data and	Paramters			1
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H [*]]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} :										
10.14					· · .					SET INTAKE AT 75
10:28	12.67	17.5		3.95	119			350	·	
10:32	12.72	16.7		4.12	61.0					
10:34	12.70	16.7		4.03	29.0			11		
10:41	12.68	16.8		4.14	13.9				_	
10:44	1265	16.7		3.94	13.g					
10:51	12.64	16.7		3.94	13.5					SAMPLED
									4.60	SAMPLED FINAL
		٠.								
 			· · · · · · · · · · · · · · · · · · ·							
						·				
					<u>.</u>					
		:								
								!		
		;								

	General Information Diject Name: BASE RIVERVIEW Project Number: 38.08 = (6216.04)													
Project Na	ame: BA	of Ru	VERVIE	W	Project N		38.0	ا تا	216.0	04				
Location:	IMW.	40-		·	Field Per	rsonal: <u>)</u> .	MIE	ECKI	/M	1 ABDITUAH				
Well ID:	BI	.mw -10	Cont/ Diameter:	GS	(vc)	2``	Start Tin	ne: ک	106	·				
Weather:	RAI	J		Date:	817	100	End Tim	e: / (: 00					
Pump	Туре:	Peristalti	C			Tubing:	1/4"ID H	DPE						
				Claid	Mankanin	g Data and	Dommto							
Time	pH	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General				
Unita	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)					
T _{start} :										INTAKE 125				
8:05							·		4,35					
8:20	12.46	15.9		3.48	-4.5			300						
8:34	12.47	14.0		3.49	-9.7		-	şı						
8:38	12.50	15.9		361	-10			11						
B:40	12.49	15.8		3 U3	-10			h						
8:47	12.49	15.9		3.66	~10			71		SAMPLE				
									4.98	-FINAL				
														
						:								
	,													
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			,							
				,										
						ı								

Weather: Sunny 76° Date: Start Time: 10:55 Weather: Sunny 76° Date: Start Time: 16:05 Pump Type:							al Informati			- 3	
Westher Sunny 76	Project Na	ame:	BASF	River	rview	Project N	Number:	38	08 E	56214	.04
Weather: Survivy 76	Location:	Λ				1	rsonal:	Hei	di F	re de	VICES Pate
Veather: SUMY 76° Date: S/16/00 End Time: 16:05	Well ID:			Cont		PVC		Start Tim	e :	10:55	,
Pump Type:				260	Date:	8/16	100	End Time	»: /	6:05	5
Time pH Temp DO Cond Turbid TDS ORP Rate DTW General	Pump				<u></u>			1/4"ID 			
Time pH Temp DO Cond. Turbid. TDS ORP Rate DTW General Units 10gH1 COF ASKM					Field	Monitorin	a Data and				
Tamifyoo 9.45 18.4 54.3 76 10.90 TD = 15.53.3 (1.05 9.45 17.1 46.4 11 10 1 vol = .75.9a) (1.10 9.46 16.6 36.1 4 10 0 0 projectore samp (1.120 9.52 17.8 41.0 0 projectore samp (1.125 9.54 16.1 39.5 9 projectore samp (1.130 9.54 16.5 39.9 10 projectore samp (1.140 9.43 16.6 44.5 17 projectore samp (1.152 9.38 18.2 52.2 68 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Time	pН	Temp	DO						DTW	General
Tamifyoo 9.45 18.4 54.3 76 10.90 TD = 15.53.3 (1.05 9.45 17.1 46.4 11 10 1 vol = .75.9a) (1.10 9.46 16.6 36.1 4 10 0 0 projectore samp (1.120 9.52 17.8 41.0 0 projectore samp (1.125 9.54 16.1 39.5 9 projectore samp (1.130 9.54 16.5 39.9 10 projectore samp (1.140 9.43 16.6 44.5 17 projectore samp (1.152 9.38 18.2 52.2 68 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Units	-log[H ⁺]	C F		MS/em		%		ml/min	ft (BTOC)	set intakel
11:05 9.45 12.1 46.4 11 1 1 10.90 F. 15.9a.1 11:10 9.46 16.6 36.1 4 DTW 10.90 F. 16.15 9.52 17.8 35.1 76 11:20 9.52 17.8 41.0 0 purged over 11:25 9.54 16.1 39.5 9 Daylons 11:30 9.54 16.5 39.9 10 11:45 9.42 16.5 44.0 38 11:52 9.38 18.2 52.2 68 11:52 9.38 18.2 52.2 68 13:03 9.48 16.4 49.6 18 13:06 9.43 16.1 46.9 21 13:06 9.38 16.1 49.9 26 13:14 9.37 15.9 49.3 22	T _{start} ://00	9.45	18:4		54.3	76				10.90	TO = 15.53f
11:10 9:46 16.6 36.1 4 DTW 10.90 FT We force Source 11:15 9:52 17.8 35.1 76 11:20 9:52 17.8 41.0 0 purged over 11:25 9:54 16.1 39.5 9 11:30 9:54 16.3 38.1 12 11:35 9:54 16.5 39.9 10 11:40 9:43 16.6 44.5 17 11:45 9:42 16.5 448.0 38 11:52 9:38 18:2 52.2 68 13:03 9:48 16.4 49.6 18 13:06 9:43 16.1 49.6 18 13:06 9:43 16.1 49.9 21 13:14 9:37 15:9 49.3 22	٠.	l	17.1		464	11					1 vol = , 75galla
11:15 9.52 17.8 35.1 76 11:20 9.52 17.8 41.0 0 11:25 9.54 16.1 39.5 9 11:30 9.54 16.3 38.1 12 11:35 9.54 16.5 39.9 10 11:40 9.43 16.6 44.5 17 11:45 9.42 16.5 48.0 38 11:52 9.38 18.2 52.2 68 13:03 9.48 16.4 49.6 18 13:04 9.43 16.1 46.9 21 13:10 9.38 16.1 48.9 26 13:14 9.37 15.9 49.3 22	11:10	9.46	16.6		36.1	4					DTW 10.90 ft before Samplin
11:25 9.54 16.1 39.5 9 2 29allons 11:30 9.54 16.3 38.1 12 11:35 9.54 16.5 39.9 10 11:40 9.43 16.6 44.5 17 11:45 9.42 16.5 48.0 38 11:52 9.38 18.2 52.2 68 13:00 9.44 20.8 53.4 39 13:03 9.48 16.4 49.6 18 13:04 9.43 16.1 46.9 21 13:10 9.38 16.1 49.9 26 13:14 9.37 15.9 49.3 22	11:15	9.52	17.8		35.1	76					
11:30 9.54 16.3 38.1 12 11:35 9.54 16.5 39.9 10 11:40 9.43 16.6 44.5 17 11:45 9.42 16.5 48.0 38 11:52 9.38 18.2 53.2 68 13:00 9.44 20.8 53.4 39 13:03 9.48 16.4 49.6 18 13:06 9.43 (6.1 46.9 21 13:10 9.38 16.1 48.9 26 13:14 9.37 15.9 49.3 22	11:20	9.52	17.8		41.0	0				1	Durged over
11:30 9.54 16.3 38.1 12 11:35 9.54 16.5 39.9 10 11:40 9.43 16.6 44.5 17 11:45 9.42 16.5 48.0 38 11:52 9.38 18.2 53.2 68 13:03 9.48 16.4 49.6 18 13:04 9.43 16.1 46.9 21 13:10 9.38 16.1 48.9 26 13:14 9.37 15.9 49.3 22	11:25	9,54	16.1	·	39.5	9					agallons
11:40 9.43 16.6 44.5 17 11:45 9.42 16.5 48.0 38 11:52 9.38 18.2 52.2 68 13:00 9.44 20.8 53.4 39 13:03 9.48 16.4 49.6 18 13:06 9.43 16.1 46.9 21 B:10 9.38 16.1 48.9 26 13:14 9.37 15.9 49.3 22	11:30	9.54	14.3		38,1	12					
11:45 9.42 16.5 48.0 38 11:52 9.38 18.2 52.2 68 13:00 9.44 20.8 53.4 39 13:03 9.48 16.4 49.6 18 13:06 9.43 16.1 46.9 21 13:10 9.38 16.1 49.9 26 13:14 9.37 15.9 49.3 22	11:35	9.54	16.5		39.9	10					
11:45 9.42 16.5 48.0 38 11:52 9.38 18.2 52.2 68 13:00 9.44 20.8 53.4 39 13:03 9.48 16.4 49.6 18 13:06 9.43 16.1 46.9 21 13:10 9.38 16.1 49.9 26 13:14 9.37 15.9 49.3 22	11:40	9.43	16.6		44.5	17					
11:52 9.38 18.2 52.2 68 Lunch Stoppe 13:00 9.44 20.8 53.4 39 13:03 9.48 16.4 49.6 18 13:06 9.43 16.1 46.9 21 B:10 9.38 16.1 49.9 26 13:14 9.37 15.9 49.3 22			14.5		48.0	38			·		
13:03 9.48 16.4 49.6 18 13:15 began sampling 13:06 9.43 16.1 46.9 21 B:10 9.38 16.1 48.9 26 MIDTW after sampling 13:14 9:37 15:9 49:3 22					52.2						Lunch Stopped
13:06 9.43 16.1 46.9 21 B:10 9.38 16.1 48.9 26 13:14 9.37 15.9 49.3 22	13:00	9.44	20.8		53.4	39					
13:06 9.43 16.1 46.9 21 B:10 9.38 16.1 48.9 26 13:14 9.37 15.9 49.3 22	13:03	9.48	16.4		419.6	18				7	13:15 began Sampling
B:10 9.38 16.1 49.9 26 MIDIW after 5AMPLING	13:06	9.43			46.9	21					
13:14 9:37 15:9 49:3 22	B:10	9.38				26			-	P	11DTW after
		9.37	15.9			22					
					. 1						
								()		,	1

Low Flow Groundwater Sample Collection Log Page 1 of Seneral Information												
Project Na	ame.	2nor	- 2		Project N			IO E A	1 211			
-			- River		 			8 E O				
Location:	<u></u>	Livervi	lew, A		Field Per	rsonal:	Hei	di F	ede.	rics		
Well ID:	MW.	エ	Cont/ Diameter:	GS	PVC	<u> </u>	Start Tim	10	0:00	-17:15		
Weather:	Ove	vcast	- 76°	Date:	8/15	100	End Time	: 8/16/	00 7	30 - 10:40 finished Saup		
Pump	Туре:	Peristalti				Tubing:	1/4"ID HJ	OPE TU	90 N			
				Field	Vonitorin	g Data and	Doramton					
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General		
Units	-log[H ⁺]	℃ °F		S/M		%		ml/min	ft (BTOC)	TO = 11.91 1 VO/ = . 45gallo		
T _{start} : 10 10	8.67	14.9		.429	2.7			L250	9.10			
10:15	8.77	18.2		.449	4.0			l				
10:20	8.79	20.1		,440	/1. 3					began SAupling		
10:25	8.82	20.2		.451	1.0							
10:30	8.86	20.0		. 496	4, 1				_ //	VOCS, He tals, Suifa		
10 35	8.80	19.7		.46	1.9		,			rocs, retals, suita		
10:40	8.94	20.44		.466	-1.D			· 	`			
10:45	894	21.8		. 366	-2.5							
10:50	8.99	20.0		476	-29							
10:55	9.00	19.2		. 484	0.9							
11:00	9.04	19.7		.471	-3.0							
11.02	9.06	20.1		.494	-4.1				· · · · · · · · · · · · · · · · · · ·			
11 20	9.08	20.6		494	3,4							
11.15	9.09	20.8		.502	-3.0	 						
11:20	9,18			.507	-7.4							
11:85	9.13	20.0		.522	-7.1							
	9:15	21.2		,522	-9.3							
11:45		18.9		.522	-50			,				
11:50	Carlle			529	/ 9							

٠			Low F	low Gro	oundwa	ter Samp	le Colle	ection L	og	Page 2012					
					Gener	al Informati	on								
Project Na	ame: É	BASE	Riseri	liew	Project N	lumber:	38.08	E062	16.04	/					
Location:	R	iver vis	w, M.	L	Field Pe	rsonal:	feid	i Fr	ederi	cl5					
Well ID:	MW-	I	Cont/ Diameter:	GS	PVC		Start Tim	ie: /(00.00	8/14/00					
Weather:	OVE	rcast	760	Date: 8	115/0	0	End Time	e: 17:15	母	8/14/00 7:30 began 5AMDING 8/14/00/0:40					
Pump	Type: (Peristalti	<u> </u>	··· ·	<u> </u>	Tubing:	1/4"ID HI	DBE 70	190N	94 10.40					
	·			Field	Monitorin	a Data and	Daramton	<u>-</u>		Stopped Sampli					
Time	Time pH Temp DO Cond. Turbid. TDS ORP Rate DTW General														
Units	-log[H ⁺]	°C/°F		SIM	Turbia.	%	J GIW	ml/min	ft (BTOC)	Intake sof at 11.5'					
T _{start} :								450	9.10	NTW					
19:00	9.17	19.9		ļ	-5.3				11.6.	of 162 after					
12:05		20.1		.	-3.9		-			Sampling rocs, sulate, ne fals					
1210	9.15	23.1		 	-7.9		ļ			a CN					
µ:15		21.0		.539		<u> </u>	· ·		<u> </u>						
12:20		22.3		,530 ,547											
12:28		21.7	<u></u> .		-6.7		 								
12:32		22.4		,549	-7.0 -4.7		 	 		<u> </u>					
12:43		21.5		,557						Calley Avec and					
18:45		21.1		,550					8/16/0	Igallow purged DTW bifane samp 9,52++ 8/16/00 began SAMPIING 4+ 7:30 AM. SAMPIING SVOCS, PCBS, Wetchen 1's					
10										8/16/00 began					
		NOT	e : wa	fer a	1 igh	brow	1			SAMPLING OF					
										SAMPling SVOCS					
									1	1					
					!				8/16	DTW after sampling 11.7ft					
			· · · · · · · · · · · · · · · · · · ·							18.74+					
					 			<u> </u>							

					Gener	al Informati	on						
Project N	ame: BA	so h	VERVIE	N	Project:N	iumber: 38	.08 <i>E</i> 0	16216.	09	· _			
Location:					Field Per					Smith			
Well ID:	SMW	1-5	Cont/ Diameter:	GS	PVC	2"	Start Tim		5:30				
Weather:				Date:	3/14/0	0	End Time) :					
Pump	Type:	Peristalti	C			Tubing:	1/4"ID HE	OPE					
				Field I	Monitorin	g Data and	Paramten	S					
Time pH Temp DO Cond. Turbid. TDS ORP Rate DTW General													
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (B'TOC)	·			
T _{start} :					l 1	ļ							
15.38									5.20				
15:39	7.11	20.9		18.Z	93			350		LOFFEE			
15:43	7.94	19.5		18.1	92			(f		Ų			
15:46	7.97	19.5		17.6	49			11		11			
15:50	7.98	19.4		179	44			(1		11			
15:54	8.50	19.1		17.9	34			j(4			
15:57	8.78	19.1		17.9	29			11		il.			
16:00	8.92	19.1		17.8	25			1'		/1			
16:03	9.04	19.2		17.4	16			f-t		11			
16:06	9.00	19.2		רינו	13			11		"			
16:12	4.02	19.3		17.4	13			rt ·		· , r			
16:30	' SAW	PLE		,	· 								
17:15								i 	5.18				
				\						·			
·.				,									

	General Information Troject Name: BASF RIVER VIEW Project Number: 38.08E06216.04													
Project Na	ame: 31	tsf (RIVERVI	ew	7			06216	.04					
Location:	RIV	erVI	ew,L	11:	 	rsonal: ၂. າ				th				
Well ID:	ØI m	w-5	Cont/ Diameter:	GS	PVC	2''	Start Tim	ie: (3:	37					
Weather:	Core	AR		Date:	8/14/		End Time	s: 15.3	<u> </u>					
	Туре:	Peristalti	ic.			Tubing:	1/4"ID H							
			- 4	Field	ionitoring Data and Paramters									
Time	pН	Temp	DO.5	Cond.	Turbid.	TDS	ORP	Rate	DTW	General				
Units	-log[H ⁺]	°C/°F	1.1	l.		%		ml/min	ft (BTOC)					
T _{start} :			1	31.1										
13:37									5.02					
13:46	8.44	17.4		22.3	121			170		Coffee				
13:50	8.42	16.8		22.4	112			170		WFFEE				
13:54		17.8		22.3	81			170		11				
13:58	9.18	17,5		22.3	72			11		21				
14.03	9.24	18.1		<i>2</i> 2.3	68			10.		11				
14:07	9.33	17.8		22.5	62			10		EC.				
15.30									5.94	FINAL				
			,						,					
			·											
	,				· · · · · · · · · · · · · · · · · · ·	,								
				\ \ \ \			·							
									·					
			,				,							
		į												

					Genera	I Informatio	n				
Project Na	ime: Bas	F Ri	VERVIE	بر	Project N	umber: 3	8 08E	06210	o04		
Location:			MI		Field Per					ABDALLA	4
Well ID:			Cont/ Diameter:	GS	PVC	2"	Start Tim	e: <i>B</i> .2	υ		
Weather:	Cioro	4		Date: 2	3/18/0	70	End Time	: 9:4	(
Pump	Туре:	Peristaltic				Tubing:	1/4"ID H0	PE			
				Field	Monitorin	g Data and	Paramters	5			
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	Gene	
Units	-log[H [*]]	°C/°F			-	%		ml/min	ft (BTOC)		·
T _{start} . E'20								300	6.31	INTAKE 13.0'	AT
8:38	9.44	16.1		.80	123						
8:43	9.95	14.1		.83	131						
8:48	9.97	16.2		,83	110						
B:53	9.99	16.2		<i>.</i> 83	104	<u> </u>					
8:58	10.04	16.3		. 8.2	95.7	·	·		<u> </u>		·
9:01	10.08	16.4		.81	85.5						
9:04	10.09	16.3		ВО	84.3		! 	٧			
						·				SAMPLE	s Cauect
-											
						,					

					Genera	I Informatio	n :			
Project Na	eme: BA	of R.	ver vie	<i>\(\lambda \)</i>	Project N	umber:	38.0B	E062	16.04	(
Location:			iew A		Field Per	sonal: J. 1	MELEC	KI	M- A	BDALLAH
Well ID:	śmw−	9	Cont/ Diameter:	GS	₩	۵٬۱	Start Time			
Weather:	CLOUR)Y		Date: Q	118/00		End Time	8:	1.5	
Pump	Туре:	Peristaltion	; 			Tubing:	1/4"ID HD	PE		
			······································	Field I	Monitoring	g Data and	Paramters	ring a state		
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} : 658								300	6.52	TNTAKE AT
7:23	12:30	17.9		1.17	29.8			 		
7;28	10.09	17.6	,	.57/	-3.8					
7:33	9.85	17.5		.57/	-6.3					-
7:38	9.81	17.4		1570	~6.5					
7.43	9.77	17.4		,540	-7.0				6.46	SAMPLES BUELTE
								·		
						·				
						·				
	i.									-
				1-						
								,		
	:									
			*;							
			<u> </u>							
· · · · · · ·									 	

					Gener	al Informati	on						
Project Na	Project Name: BASE RIVERVIEW Project Number: 38-08 506216.04												
Location:	- n		WIL		Field Pe					ABDALLAH			
Well ID:	IMW		Cont/ Diameter	GC	evc)		Start Tim		:15				
Weather:	Ciou			Date:	8/18/00		End Time		3:10				
Pump		Peristalt	ic.	, 		Tubing:	1/4"ID HI						
				Field	Monitorin	g Data and	Paramter						
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General			
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)				
T _{stert} :/0:15									6.74	INTAKE AT 13' DEEP			
10:28	7.36	17.5		.28	.4			300					
10:34	7.04	16.6		136	29.3			1					
10:37	7.03	16.7		.35	3.9				ļ	·			
10:42	4.90	16.9	 	.35	2.9				<u> </u>				
10:48	6.91	16.8	<u></u>	.34	-5.3								
10:53	7.05	16.8		.34	16.2					·			
10:58	2.09	14.9		.35	-6.7								
11:03	7.02	17.1		.35	7.3								
11.06	6.89	17.3		.34	-5.0			V		SAMPLES WLLECTE			
			_	·						, ,			
									,				
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
			,	i									
								·					

						al Informatio							
Project Na	Project Name: BASFRIVERVIEW Project Number: 38-08E06216.04 Occation: RIVERVIEW, MI Field Personal: WEC												
i .		rvil	WIL	11			WE (
Well ID:	Smw.	-16	Cont/ Diameter:	GS	€	211	Start Tim	ie: 					
Weather:				Date:	8/22/	00	End Time	e:					
Pump	Туре:	Peristaltion	c			Tubing:	1/4"ID HI	OPE					
Field Monitoring Data and Paramters													
Time	рΗ	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General			
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	TD 8.06			
T _{start} :										·			
14)05									4.84	intake@ 7.50			
14.08	1117	23.2		2.83	20								
14311	1124	22:3		297	14			185					
14:15	11.25	22.7		2.87	11								
14:18	1124	228		2.70	12.								
14.22	11.11	22.9.		2.09	3								
14:26	11.04	23:2		1.92	3								
14 29	11.03	23.2		1.87	2				1:				
14:36	11-01	23.3.		1.82	2								
14:40	11.00	23,4		1,79	4.			ļ					
14:44	10.99	23.3		i.80 ··	3								
		. •											
							<u> </u>						
						_							
·							L						
	į								¦ T				

<u> </u>	General Information Project Name: BASF Riverview Project Number: 38 086 06216.04														
Project N	ame: \int_{0}^{∞}	ASF (Rivery	ilw	1			E 066	16.0	4					
	_		VIMI		Field Per		NEC								
Well ID:	SMW-		Cont/ Diameter:	GS	€€	2"	Start Tim	ne:	,						
Weather:				Date: <	8/22/0	0 :	End Time	e:							
Pump	Type:	Peristalti	C			Tubing:	1/4"ID H	DPE							
Field Monitoring Data and Paramters															
Time	Time pH Temp DO Cond. Turbid. TDS ORP Rate DTW General														
Units	l (log[H*]	°C/°F		3	10	%		ml/min	ft (BTOC)	TD 7.70					
T _{start} :	<u> </u>				<u> </u>			. :							
10:30					[3.06	intokep 7.2					
10:40	10.10	18.9		1392	143			240/1.		inteke@ 7.2 40ml/10sc					
10:44	1011	19.1		,352	23										
10:47	10.01	19.4		1343	8					·					
10:51	9.95	19.6		1346	6										
10:34	9.87	19.6		1351	5					·					
10:59	9.74	19.60		1356	5					· · _ · _ · _ · _ · _ · _ · _ · _ ·					
11:03	9.53	19.6		1364	5										
11108	9.46	19.6		1368	5					<u> </u>					
1011	9.34	19.6		1373	5.	!									
11:13	9.35	i9.6	`	1379	4										
	,							,							
			· 				·								
····				1						· ·					
				,						i					
				<u>-</u>			· ·								
								1							

					Gener	al Informati	on						
Project N	Project Name: BASFRIVEYVIEW Project Number: 38-08E06216.04												
Location:	RIV	'ervi	eu).	MI	Field Per			·					
Well ID:	5mw		Cont/ Diameter:	GS	(vc)	2"	Start Tim	1e:					
Weather:				Date:	8/21/	9 0	End Tim	e:		,			
Pump	Туре:	Peristalti	C			Tubing:	1/4"ID H	DPE					
				Plate	Maniforia	g Data and	Baramtar						
Time	pH	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General			
Units	-log[H ⁺]	°C/°F				%		ml∕min	ft (BTOC)				
T _{start} :										TD 8.04			
15:48									2.48				
16:01	6.74	17.4		185	225					intake @ 7.50			
16:04	6.68	175		1.56	29								
16:106	6.69	18.0		1.47	19			266/mm					
16:09	6.23	18.3		1.33	12								
16:16	6.83	18.6		1.19	3		·			-			
16:21	6.82	18.4	·	117	3	J				. · · · · · · · · · · · · · · · · · · ·			
16:24	683	18.4		118	3								
<u> </u>													
			·										
					:								
		·											
				7									

	General Information									
Project N	lame: 🌈	DASF	River	Vien	Project N	lumber:	38-	DBEDL	216.	04
Location:	Location: RIVERVIEW, IJI Field Personal: WEC SF(MP)									
Well ID:	ICont/									· · · · · · · · · · · · · · · · · · ·
Weather:	Weather: Date: 8 /2 1/00 End Time:									
Pump	туре:	Peristalti	9			Tubing:	1/4"ID H	DPE		
	Field Monitoring Data and Paramters									
Time	рH	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	°C/°F	, 	3	10	%		ml/min	ft (BTOC)	
T _{start} :										
12155						, 			3.06	intake @ 7.30
13.105	10:46	18.6		2.23	39					
13108	1020	170		2.14	25					· · · · · · · · · · · · · · · · · · ·
13:11	9.92	121		1.91	22					40m//12 sec
13:14	9.61	17.6		1.81	16		,	200/min		· ·
13718	9A3	127	·	1.79	13					
13:22	4.25	17.8		178	10			185/ Min		
13:25	9.B	17.9		1.79	8		_			
13:29	8.98	17.8		180	9					
13!34	8.86	18.1	·	1.83	8					
13137	8.82	18.2	·	1.84	11					
13:42	8.80	127		1.87	14			120/20		40n//20ses
13147	8.75	17.6		1.90	14					-
13:57	8.74	17.8		1.921	20					
	·					· · · · · · · · · · · · · · · · · · ·				
							· · · · · · · · · · · · · · · · · · ·			
							·			
						<u> </u>		<u> </u>		

General Information										
Project Na	ame: [/	BASE	= RIV	ey v ieu	Project N	Number: 3	8-081	ED4 2	110.6	04
Location:			1,41	·	Field Per	rsonal: U	NEC	·		·
Weil ID:	MW-L		Cont/ Diameter:	GS	evc)	EVC 2 11 Start Time:				
Weather:				Date: 8	/16/00		End Time	e: 		
Pump	Туре:	Peristalti	C			Tubing:	1/4"ID H	OPE		
				Field	Monitorin	g Data and	Paramter			
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	Bow-7.90
T _{stan} 2!44									7.00	Bow-7.90 inteker 7.8'
14:47	7.53	24.3	:	445	999					
	7.98	27.2		4.83	170					
15/12			:					 		welldry(a)
										into ho
				1						
	1									·
					-					
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				·		
				,			,			
										
					;					

	General Information									
Project Na	ame: $ ho$	ASE I	Rivery	(أول)	Project Number: 38-08E06214-04					
Location:			W. L		Field Per		WEC			
Well ID:			Cont/ Diameter:	Ge	_E vc)	2"	Start Tim	e:		
Weather:				Date: 8	15/00)	End Time	9 :		
Pump	Туре:	Peristalti	C	· · · · · · · · · · · · · · · ·		Tubing:	1/4"ID HE	OPE		:
Field Monitoring Data and Paramters										
Time	рН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} 16.15									5.44	intoke at 24'
16:26	7,09	20.3		5.63	44					·
16:30	6.94	17.8		5.68	69					10225 l/m/4
16:32	6.87	181D		5,70	61					·
1636	6.87	19.1		571	38					10125 Mm.n
16:41	683	200		5.21						•
16:53	7.04	224		5.72	1					
16.59	697	23,3		5.72	1					
18500										stop sample
8:41	:		:					·	12:02	intake @ 24'
	·									
				,						

					T	Informati				1
Project Na	ime: (ASF F	livery	(ilu)	Project N	umber:	38-08	E062	16.04	/ (
Location:	Rive	CYILL	U, U	1	Field Personal: WEC					
Well ID:	· · · · · · · · · · · · · · · · · · ·				PVC	2"	Start Time	9: 	· - · · · · · · · · · · · · · · · · · · 	
Weather:				Date:			End Time	:		
Pump	Туре:	Peristaltic				Tubing:	1/4"ID HD	PE	P	lage 2 of 2
				Field !	Monitorin	g Data and	Paramters	.		
Time	pН	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H [*]]	°C/°F		·		%		ml/min	ft (BTOC)	
Tour Big	8.88	215		23.8	1					
13:15	889	अन		23.9						
13:22	8.99	211		23.9	31		<u> </u>			
13:30	8.87	215		23.6	0					
13'37	896	20.8		23.4	1					
1342		20.7		23,6	1					_
14:16										Drye intot
9:24				<u> </u>					10.20	1 de la 10
10:40									10.70	intakee
			·· ·· ·							
							1			:
·										
	,		 				:		 	,
				<u> </u>			<u> </u>	 	<u> </u>	

General Information										
Project Na	me: 13/	45F -	River v. Mi	ew	Project Number: 38-88E06216-84					
Location:	R.	ver viec	Mi		Field Personal: WRC					
Well ID:	P2-5		Cont/ Diameter:	GS	€	ລ"	Start Time	e:		
Weather:				Date:	8/10/0	0	End Time	:		
Pump	Type:	Peristaltic)			Tubing:	1/4"ID HE	PE	-	
				Field	Monitorin	g Data and	Paramters	.		
Time	рΗ	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H ⁺]	°C/°F				%		ml/min	ft (BTOC)	
T _{start} : 10:15	: 								5:061	intoke@ 10.5
10:20	8.55	17.7		16.7	129					
10:22	8.57	16.9		17.0	127					·
10:27	8.57	17.4		16.5	128					
10:33	8.58	17.8		13,8	129					16 literfull ?
10:39	8.6	18,2		12.1	129					
10:46	8.6 Z	1811		11.2	129					
10:57	8.59	19.3		9.18	50		ļ <u>.</u>			
11:06	8.62	18.7	_	11,2	119		<u> </u>			
11:16	8.58	18.6		15.0	10					
1127	8.58	18.6		15,6	52					
11:36	8.59	13:7		15.	52					~1.5-2.5561 removed
11:39	8:58	17.6		16.0	75					removed
8:00	·								10.20	<u> </u>
		`								
12:43							1.		9,20	intake@ 105
12:54		23,2		23.9		:				
13'00	8.88	23.9		21.5	0					

				·	Genera	al informati	on			
Project N	ame:	BASE	River	VICU	Project N	lumber:	38.08	10621	6.04	/
Location:			U M		Field Per				+ Whole	
Well ID:	DMW-	9	Cont/ Diameter:		PVC	2"	Start Tim	ne:		
Weather:				Date: .	8/28/	00	End Time	e:		
Pump	Type:	Peristalti	E) Blad			Tubing:	1/4"ID HI	DPE		
				Field	Monitorin	g Data and	Paramter	<u> </u>		
Time	pH	Temp	DO	Cond.	Turbid.	TDS	ORP	Rate	DTW	General
Units	-log[H*]	°C/°F				%		ml∕min	ft (BTOC)	TD 30.16
T _{stert} :										
10:15									7,27	intekp@222
10:39	5.03	14.0		3.81	25			450	,	
10:44	5.84	17.1		3.75	37			400		
10:49	5.98	15.4		3.25	38					
10:54	5.99	15,3		3,75	3 <i>5</i>			250		
10:59		16.5		3.76	35			250		
11:04	6.05	16.1		3.77	34		· 	250		
11:05						<u> </u>				Samples collated
							<u> </u>			
				1						
	·			:						·
			·			,				
				·						
		·								
										·

Appendix D

Table 6
Field Hydraulic Conductivity Estimates - August and November 2000
BASF Property, Riverview Michigan

TEST	DATE	TEST	ESTIMAT	ED K (FT/MIN)	· · · · · · · · · · · · · · · · · · ·	
FII	RII	UNIT	FII	RII	GWEL-SCREEN	SCREENED IN
8/24/00	8/24/00	. W .	NV	1.43 E-3	IN	SANDY FILL
8/22/00	8/22/00	W	6.244 E-5	5.288 E-5	ABOVE	SILTY-CLAY, CLAY
NP	8/28/00	U	NV	1.395 E-3	IN	SILTY FILL, SAND, SILTY CLAY
8/22/00	8/22/00	Р	5.028 E-4	4.099 E-4	ABOVE / CLOSE	SILTY-SANDY-FILL, CLAY
8/22/00	8/22/00	W	NV	9.383 E-3	IN	FILL, SANDS, SOFT CLAY
8/22/00	8/22/00	. W .	4.182 E-4	6.115 E-4	ABOVE	FILL, SILTY CLAY, STIFF CLAY
8/21/00	8/21/00	P	1.572 E-4	1.283 E-4	ABOVE	FILL, SAND, SILTY CLAY, STIFF CLAY
8/22/00	8/22/00	W	1.341 E-3	3.674 E-3	ABOVE	SANDY GRAVEL, FILL
8/23/00	8/23/00	W	3.665 E-5	5.917 E-5	CLOSE	CLAY AND SAND
8/22/00	8/22/00	P	1.352 E-3	1.433 E-3	ABOVE	SANDY GRAVEL, FILL
8/23/00	8/23/00	P	1.987 E-4	2.239 E-4	ABOVE	SANDY FILL, CLAY FILL
11/17/00	11/17/00	U	NV	NP DRY	IN	SILTY CLAY
8/22/00	8/22/00	Р	NV	1,174 E-2	IN	SANDY FILL
8/22/00	8/22/00	W	4.769 E-4	4.507 E-4	ABOVE	SANDY FILL, CLAY AND SILT
8/31/00	11/15/00	U/C	3.846 E-7	4.33 E-7	ABOVE	STIFF-V.SOFT CLAYS
8/22/00	8/22/00	W	1.035 E-3	3.351 E-3	ABOVE	CONCRETE, GRAVEL, MISC FILL
8/22/00	8/22/00	P	3.001 E-4	3.072 E-4	ABOVE	FILL, PEAT, SILTY CLAY
11/15-16/00	11/16/00	C	3.005 E-8	2.812 E-7	ABOVE	STIFF-V.SOFT CLAYS
8/23/00	8/23/00	P	NV	3.571 E-4	IN	SAND, FILL
8/23/00	8/23/00	W	2.431 E-4	3.097 E-4	ABOVE	FILL, PEAT, SILTY CLAY
11/15/00	11/15/00	C	1.655 E-7	5.112 E-7	ABOVE	HARD-SOFT, SILTY-CLAY
NP	8/29/00	U	NV	1.529 E-5	IN	GRAVEL, SILT, SANDY-CLAY
8/23/00	8/23/00	P	1.465 E-4	2.483 E-4	ABOVE	FILL AND ORGANICS
11/15-16/00	11/16/00	C	2.854 E-7	3.172 E-7	ABOVE	V.STIFF-SOFT, SILTY-CLAY
8/25/00	8/25/00	W	NV	1.694 E-3	IN	FILL, CLAYS, SILT
8/24/00	8/24/00	W	1.103 E-4	1.116 E-4	ABOVE	SILT, SILTY-SAND, WOOD, SILTY-CLAY
11/16/00	11/16/00	С	2.657 E-7	3.166 E-7	ABOVE	V.STIFF-V.SOFT, SILTY-CLAY
8/23/00	8/23/00	P	NV	2.241 E-1	IN	GRAVEL, CONCRETE, SILTY-CLAY
11/1600	11/16/00	С	NV	2.65 E-6	IN	FILL, SILTY-CLAY, SILT
NP	8/29/00	U	NV	1.17 E-2	IN	SLAG, GRAVEL
8/23/00	8/23/00	Р	NV	2.729 E-3	IN	SILTY-CLAY, GRAVEL, SLAG, SILT, CLAY
11/17/00	11/17/00	С	NV	3 156 E-5	IN	SILTY-GRAVEL, CLAY
8/23/00	8/23/00	P	NV	5.045 E-4	IN / CLOSE	FILL, CLAY, SAND, SILTY-CLAY
NP	8/25/00	P	NV	2.312 E-3	IN	FILL, SLAG, SILT
8/25/00	8/25/00	P	NV	1.794 E-3	IN	FILL, CINDERS, CLAY, GRAVEL, SILTY-CLAY
NP .	8/24/00	P	NV	4.472 E-5	IN	FILL, CINDERS, SILTY CLAY
NP	8/28/00	U	NV	1.528 E-2	IN	GRAVEL, SAND, SILT, CLAY, FILL
8/24/00	8/24/00	P	NV	1.348 E-1	IN	SAND, GRAVEL
8/24/00	8/24/00	P	NV	1.164 E-2	IN/CLOSE	FILL, PEAT, SILTY-FILL, CLAY
8/30/00	11/16/00	U	6.377 E-6	NO	ABOVE	CLAYEY-SAND, SILT, SLAG, CLAY
8/31/00	8/31/00	U	3.177 E-4	7.014 E-4	ABOVE	SLAG, CINDERS, SANDS, SILT
8/24/00	8/24/00	Р	1.186 E-5	1.661 E-5	ABOVE	GRAY-GREEN CLAY BELOW FILL
	FII 8/24/00 8/22/00 NP 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/23/00 8/23/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 11/15-16/00 8/23/00 11/15-16/00 8/23/00 11/15-16/00 8/23/00 11/15-16/00 8/23/00 11/15-16/00 8/23/00 11/15-16/00 8/23/00 11/15-16/00 8/23/00 11/15-16/00 8/23/00 11/15-16/00 8/23/00 11/15-16/00 8/23/00 11/16/00 8/23/00 NP 8/24/00 8/24/00 8/24/00 8/30/00 8/31/00	8/24/00 8/24/00 8/22/00 8/22/00 NP 8/28/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/23/00 8/23/00 8/23/00 8/23/00 8/23/00 8/23/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/22/00 8/23/00 8/23/00 8/23/00 8/23/00 8/23/00 8/23/00 8/23/00 8/23/00 8/25/00 8/25/00 8/24/00 8/24/00 8/23/00 8/23/00 11/16/00 11/16/00 8/23/00	FII RII UNIT 8/24/00 8/24/00 W 8/22/00 8/22/00 W NP 8/28/00 U 8/22/00 8/22/00 P 8/22/00 8/22/00 W 8/22/00 8/22/00 W 8/22/00 8/22/00 W 8/22/00 8/22/00 W 8/23/00 8/23/00 W 8/23/00 8/23/00 W 8/22/00 8/22/00 W 8/23/00 8/23/00 P 11/17/00 11/17/00 U 8/23/00 8/23/00 P 8/22/00 8/22/00 P 8/22/00 8/22/00 W 8/22/00 8/22/00 W 8/22/00 8/22/00 W 8/22/00 8/22/00 P 11/15-16/00 11/16/00 C 8/23/00 8/23/00 P 8/23/00 8/23/00 P 8/	FII RII UNIT FII 8/24/00 8/24/00 W NV 8/22/00 8/22/00 W 6.244 E-5 NP 8/28/00 U NV 8/22/00 8/22/00 P 5.028 E-4 8/22/00 8/22/00 W NV 8/22/00 8/22/00 W 4.182 E-4 8/21/00 8/21/00 P 1.572 E-4 8/22/00 8/21/00 P 1.572 E-4 8/22/00 8/22/00 W 3.665 E-5 8/22/00 8/22/00 W 3.665 E-5 8/22/00 8/22/00 P 1.987 E-4 11/17/00 11/17/00 U NV 8/22/00 8/22/00 P NV 8/22/00 8/22/00 P NV 8/22/00 8/22/00 W 4.769 E-4 8/31/00 11/15/00 U/C 3.846 E-7 8/22/00 8/22/00 W 1.035 E-3 8/22/0	FII RII UNIT FII RII 8/24/00 8/24/00 W NV 1.43 E-3 8/22/00 8/22/00 W 6.244 E-5 5.288 E-5 NP 8/28/00 U NV 1.395 E-3 8/22/00 8/22/00 P 5.028 E-4 4.099 E-4 8/22/00 8/22/00 W NV 9.383 E-3 8/22/00 8/22/00 W 4.182 E-4 6.115 E-4 8/21/00 8/21/00 P 1.572 E-4 1.283 E-4 8/22/00 8/22/00 W 1.341 E-3 3.674 E-3 8/23/00 8/23/00 W 3.665 E-5 5.917 E-5 8/22/00 8/22/00 P 1.352 E-3 1.433 E-3 8/22/00 8/22/00 P 1.987 E-4 2.239 E-4 11/17/00 11/17/00 U NV NP DRY 8/22/00 8/22/00 P NV 1.174 E-2 8/22/00 8/22/00 W 4.769 E-4 <t< td=""><td> FII RII UNIT FII RII GWEL-SCREEN 8/24/00 8/24/00 W NV 1.43 E-3 IN 8/22/00 8/22/00 W 6.244 E-5 5.288 E-5 ABOVE NP 8/28/00 U NV 1.395 E-3 IN 8/22/00 8/22/00 P 5.028 E-4 4.099 E-4 ABOVE / CLOSE 8/22/00 8/22/00 W NV 9.383 E-3 IN 8/22/00 8/22/00 W NV 9.383 E-3 IN 8/22/00 8/22/00 W 4.182 E-4 6.115 E-4 ABOVE / CLOSE 8/22/00 8/22/00 W 1.341 E-3 3.674 E-3 ABOVE 8/22/00 8/22/00 W 1.341 E-3 3.674 E-3 ABOVE 8/22/00 8/22/00 W 1.352 E-3 1.433 E-3 ABOVE 8/22/00 8/22/00 P 1.572 E-4 1.283 E-4 ABOVE 8/22/00 8/22/00 P 1.987 E-4 2.239 E-4 ABOVE 8/22/00 8/22/00 P 1.987 E-4 2.239 E-4 ABOVE 8/22/00 8/22/00 P NV NP DRY IN 8/22/00 8/22/00 W 4.769 E-4 4.507 E-4 ABOVE 8/22/00 8/22/00 W 4.769 E-4 4.507 E-4 ABOVE 8/22/00 8/22/00 W 1.035 E-3 3.351 E-3 ABOVE 8/23/00 8/23/00 P NV 3.571 E-4 IN 8/23/00 8/23/00 P NV 3.571 E-4 IN 8/23/00 8/23/00 P NV 3.571 E-4 IN 8/23/00 8/23/00 P NV 1.529 E-5 IN 8/23/00 8/23/00 P 1.465 E-4 2.483 E-4 ABOVE 11/15/00 11/16/00 C 2.657 E-7 3.166 E-7 ABOVE 8/23/00 8/23/00 P NV 1.172 E-7 ABOVE 8/23/00 8/23/00 P NV 1.172 E-7 ABOVE 8/23/00 8/23/00 P NV 1.172 E-7 ABOVE 8/23/00 8/23/00 P NV 1.529 E-5 IN 8/23/00 8/23/00 P NV 1.164 E-3 IN 8/23/00 8/23/00 P NV 1.164 E-3 IN 8/23/00 8/23/00 P NV 1.164 E-2 IN / CLOSE 8/23/00 8/23/00 P NV 1.164 E-2 IN / CLOSE 8/23/00 8/23/00 P NV 1.164 E-2 IN / CLOSE 8/23/00 8/23/00 P NV 1.164 E-2 IN / C</td></t<>	FII RII UNIT FII RII GWEL-SCREEN 8/24/00 8/24/00 W NV 1.43 E-3 IN 8/22/00 8/22/00 W 6.244 E-5 5.288 E-5 ABOVE NP 8/28/00 U NV 1.395 E-3 IN 8/22/00 8/22/00 P 5.028 E-4 4.099 E-4 ABOVE / CLOSE 8/22/00 8/22/00 W NV 9.383 E-3 IN 8/22/00 8/22/00 W NV 9.383 E-3 IN 8/22/00 8/22/00 W 4.182 E-4 6.115 E-4 ABOVE / CLOSE 8/22/00 8/22/00 W 1.341 E-3 3.674 E-3 ABOVE 8/22/00 8/22/00 W 1.341 E-3 3.674 E-3 ABOVE 8/22/00 8/22/00 W 1.352 E-3 1.433 E-3 ABOVE 8/22/00 8/22/00 P 1.572 E-4 1.283 E-4 ABOVE 8/22/00 8/22/00 P 1.987 E-4 2.239 E-4 ABOVE 8/22/00 8/22/00 P 1.987 E-4 2.239 E-4 ABOVE 8/22/00 8/22/00 P NV NP DRY IN 8/22/00 8/22/00 W 4.769 E-4 4.507 E-4 ABOVE 8/22/00 8/22/00 W 4.769 E-4 4.507 E-4 ABOVE 8/22/00 8/22/00 W 1.035 E-3 3.351 E-3 ABOVE 8/23/00 8/23/00 P NV 3.571 E-4 IN 8/23/00 8/23/00 P NV 3.571 E-4 IN 8/23/00 8/23/00 P NV 3.571 E-4 IN 8/23/00 8/23/00 P NV 1.529 E-5 IN 8/23/00 8/23/00 P 1.465 E-4 2.483 E-4 ABOVE 11/15/00 11/16/00 C 2.657 E-7 3.166 E-7 ABOVE 8/23/00 8/23/00 P NV 1.172 E-7 ABOVE 8/23/00 8/23/00 P NV 1.172 E-7 ABOVE 8/23/00 8/23/00 P NV 1.172 E-7 ABOVE 8/23/00 8/23/00 P NV 1.529 E-5 IN 8/23/00 8/23/00 P NV 1.164 E-3 IN 8/23/00 8/23/00 P NV 1.164 E-3 IN 8/23/00 8/23/00 P NV 1.164 E-2 IN / CLOSE 8/23/00 8/23/00 P NV 1.164 E-2 IN / CLOSE 8/23/00 8/23/00 P NV 1.164 E-2 IN / CLOSE 8/23/00 8/23/00 P NV 1.164 E-2 IN / C

The state of the s

NOTES:

FII - Falling head slug test.

NP - Not performed. / NP DRY-Not enough water to run test

RH - Rising head slug test.

NV - Test not valid. Static water level within screened interval.

K - Hydraulic conductivity. NO - Solution could not be obtained from data.

Test unit - W = URS unit first series; U = URS unit second series; C = URS unit third series; P = Rental unit.

Table 7
Field Hydraulic Conductivity Averages - August and November 2000
BASF Property, Riverview Michigan

Shallow Monitoring Wells

	ESTIMATED K (FT/MIN)						
WELL#	FH	RH					
SMW1	NV	1.43E-03					
SMW4	NV	1.40E-03					
SMW4-99	5.03E-04	4.10E-04					
SMW5	NV	9.38E-03					
SMW5-99	4.18E-04	6.12E-04					
SMW6	1.34E-03	3.67E-03					
SMW6-99	3.67E-05	5.92E-05					
SMW7	1.99E-04	2.24E-04					
SMW8	NV	NO					
SMW9	NV	1.17E-02					
SMW10	1.04E-03	3.35E-03					
SMW11	NV	3.57E-04					
SMW12	NV	1.53E-05					
SMW13	NV	1.69E-03					
SMW14	NV	2.24E-01					
SMW15	NV	2.65E-06					
SMW16	NV	1.17E-02					
SMW17	NV	2.73E-03					
SMW18	NV	3.16E-05					
SMW19	NV	5.05E-04					
SMW20	NV	2.31E-03					
SMW21	· NV	1.79E-03					
SMW22	NV	4.47E-05					
SMW23	NV	1.53E-02					
SMW24	NV	1.35E-01					
SMW25	NV	1.16E-02					
SMW26	6.38E-06	NO					
SMW27	3.18E-04	7.01E-04					
PZ1	1.19E-05	1.66E-05					

Arithmetic

Average 4.30E-04 1.63E-02

Intermediate Monitoring Wells

	ESTIMATED K (FT/MIN)								
WELL#	FH	RH							
IMW1	6.24E-05	5.29E-05							
IMW5	1.57E-04	1.28E-04							
IMW6	1.35E-03	1.43E-03							
IMW9	4.77E-04	4.51E-04							
IMW10	3.00E-04	3.07E-04							
IMW11	2.43E-04	3.10E-04							
IMW12	1.47E-04	2.48E-04							
IMW13	1.10E-04	1.12E-04							

Arithmetic Average

3.56E-04

3.80E-04

Deep Monitoring Wells

	ESTIMATED K (FT/MIN)								
WELL#	FH	RH							
DMW9	3.85E-07	4.33E-07							
DMW10	3.01E-08	2.81E-07							
DMW11	1.66E-07	5.11E-07							
DMW12	2.85E-07	3.17E-07							
DMW13	2.66E-07	3.17E-07							

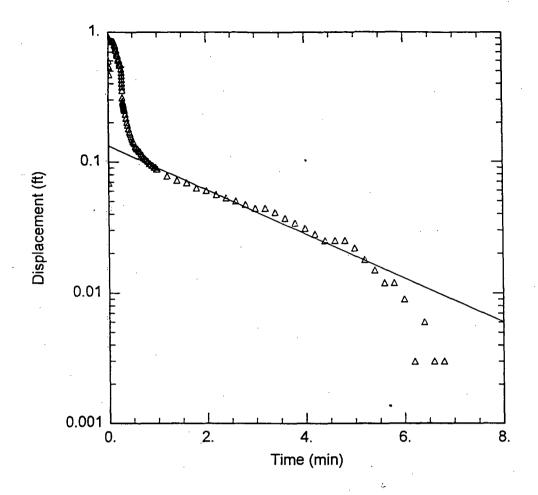
Arithmetic Average

2.26E-07

3.72E-07

NOTES:

FH - Falling head slug test.


RH - Rising head slug test.

K - Hydraulic conductivity.

NP - Not performed.

NV - Test not valid. Static water level within screened interval.

NO - Solution could not be obtained from data.

RISING HEAD SLUG TEST SMW1

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\smw1r.aqt

Date: 12/24/00 Time: 12:43:22

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview, MI

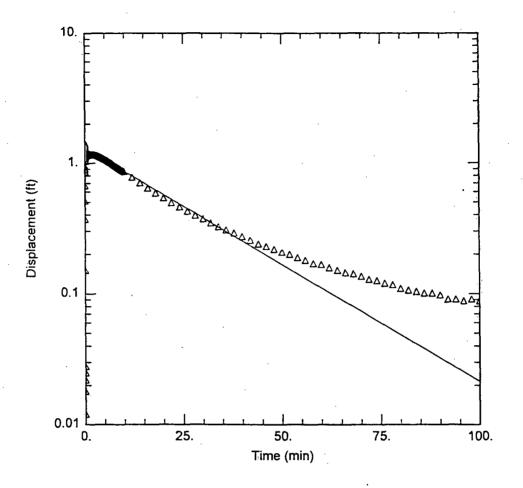
Test Well: SMW1
Test Date: 08/24/00

AQUIFER DATA

Saturated Thickness: 6.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW1)

Initial Displacement: 0.912 ft Casing Radius: 0.083 ft Screen Length: 7. ft Water Column Height: 5. ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.00143 ft/min

Solution Method: Bouwer-Rice

y0 = 0.1326 ft

FALLING HEAD SLUG TEST IMW1

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\imw1f.aqt

Date: 12/24/00 Time: 12:44:18

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

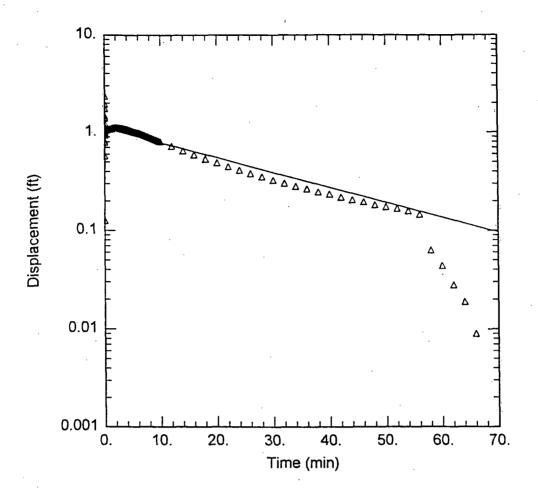
Test Well: IMW1
Test Date: 08/22/00

AQUIFER DATA

Saturated Thickness: 7.48 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW1)

Initial Displacement: 1.42 ft
Casing Radius: 0.083 ft


Water Column Height: 7.48 ft
Wellbore Radius: 0.333 ft

Screen Length: 5. ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 6.244E-05 ft/min y0 = 1.306 ft

RISING HEAD SLUG TEST IMW1

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\imw1r.aqt

Date: 12/24/00 Time: 12:45:11

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

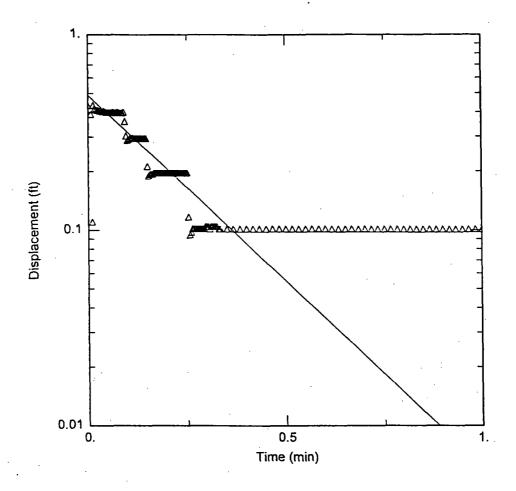
Project: 38-08e06216.00 Test Location: Riverview, MI

Test Well: IMW1
Test Date: 08/22/00

Screen Length: 5. ft

AQUIFER DATA

Saturated Thickness: 7.48 ft Anisotropy Ratio (Kz/Kr): 1.


WELL DATA (IMW1)

Initial Displacement: 2.353 ft Water Column Height: 7.48 ft Casing Radius: 0.083 ft Wellbore Radius: 0.333 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 5.288E-05 ft/min y0 = 1.105 ft

RISING HEAD SLUG TEST SMW4

Data Set: W:\BASF\Riverview\PhaseII\report\uslug0800\smw4r.aqt

Date: 12/24/00

Time: 12:46:42

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

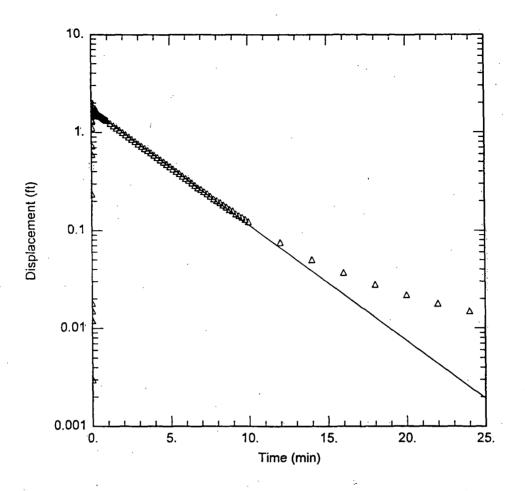
Test Well: SMW4
Test Date: 08/28/00

AQUIFER DATA

Saturated Thickness: 8.35 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW4)

Initial Displacement: 0.435 ft Casing Radius: 0.083 ft Screen Length: 10. ft Water Column Height: 7.85 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.01395 ft/min

Solution Method: Bouwer-Rice

y0 = 0.4906 ft

FALLING HEAD SLUG TEST SMW4-99

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw4-99f.aqt Date: 12/24/00 Time: 12:47:33

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW4-99 Test Date: 08/22/00

AQUIFER DATA

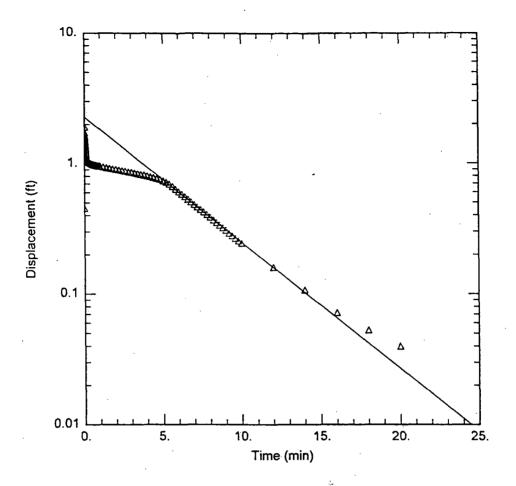
Saturated Thickness: 3.21 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW4-99)

Initial Displacement: 1.99 ft Casing Radius: 0.083 ft

Screen Length: 3. ft

Water Column Height: 3.21 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0005028 ft/min

Solution Method: Bouwer-Rice

y0 = 1.733 ft

RISING HEAD SLUG TEST SMW4-99

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw4-99r.aqt
Date: 12/24/00 Time: 12:48:10

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

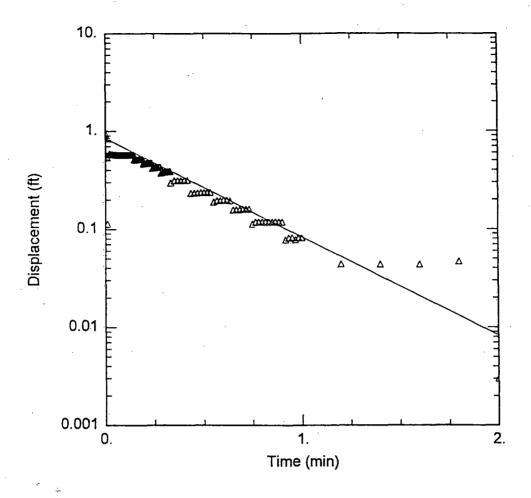
Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW4-99
Test Date: 08/22/00

AQUIFER DATA

Saturated Thickness: 3.21 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW4-99)


Initial Displacement: 1.91 ft
Casing Radius: 0.083 ft
Screen Length: 3. ft

Water Column Height: 3.21 ft
Wellbore Radius: 0.333 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004099 ft/min y0 = 2.284 ft

RISING HEAD SLUG TEST SMW5

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\smw5r.aqt

Date: 12/24/00 Time: 12:50:18

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

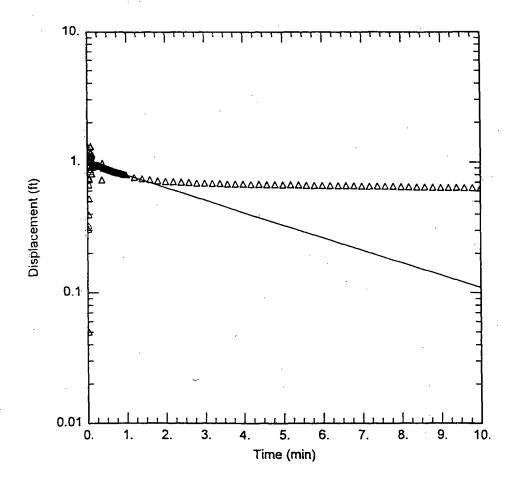
Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: SMW5
Test Date: 08/21/00

AQUIFER DATA

Saturated Thickness: 9.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW5)


Initial Displacement: 0.94 ft
Casing Radius: 0.083 ft
Screen Length: 6. ft

Water Column Height: 5.02 ft
Wellbore Radius: 0.333 ft
Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.009383 ft/min y0 = 0.8476 ft

FALLING HEAD SLUG TEST SMW5-99

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\smw5-99f.aqt
Date: 12/24/00 Time: 12:51:17

PROJECT INFORMATION

Company: URS Client: BASF

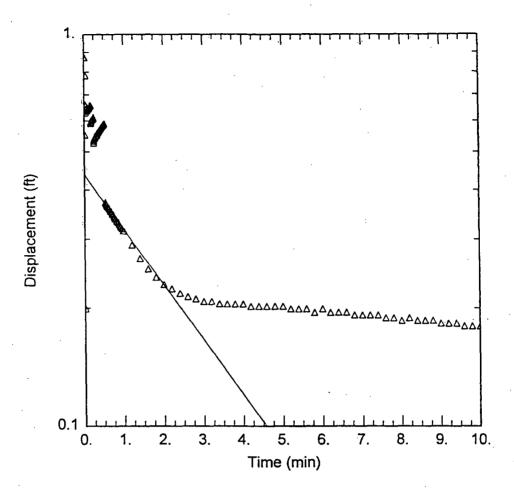
Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: SMW5-99
Test Date: 08/22/00

AQUIFER DATA

Saturated Thickness: 3.84 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW5-99)


Initial Displacement: 1.317 ft
Casing Radius: 0.084 ft
Screen Length: 3.2 ft

Water Column Height: 3.84 ft
Wellbore Radius: 0.333 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0004182 ft/min y0 = 0.9911 ft

RISING HEAD SLUG TEST SMW5-99

Data Set: W:\BASF\Riverview\Phase!I\report\slug0800\smw5-99r.aqt Time: 12:52:34

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW5-99 Test Date: 08/22/00

AQUIFER DATA

Saturated Thickness: 3.84 ft

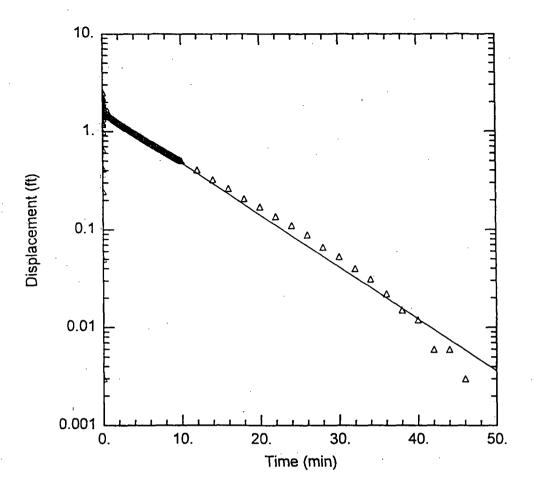
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW5-99)

Initial Displacement: 0.871 ft

Casing Radius: 0.084 ft Screen Length: 3.2 ft

Water Column Height: 3.84 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0006115 ft/min

Solution Method: Bouwer-Rice

y0≔ 0.437 ft

FALLING HEAD SLUG TEST IMW5

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\imw5f.aqt Time: 12:53:23

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview

Test Well: IMW5 Test Date: 08/21/00

AQUIFER DATA

Saturated Thickness: 9.61 ft

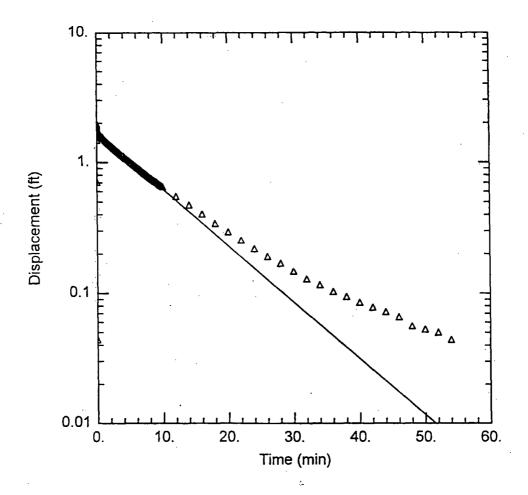
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW5)

Initial Displacement: 2.507 ft

Casing Radius: 0.083 ft Screen Length: 6.5 ft

Water Column Height: 9.61 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0001572 ft/min

Solution Method: Bouwer-Rice

y0 = 1.62 ft

RISING HEAD SLUG TEST IMW5

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\imw5r.aqt Time: 12:53:55

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview

Test Well: IMW5 Test Date: 08/21/00

AQUIFER DATA

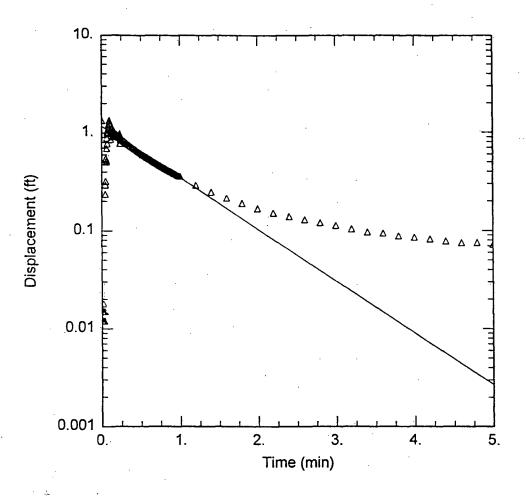
Saturated Thickness: 9.61 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW5)

Initial Displacement: 1.958 ft

Casing Radius: 0.083 ft Screen Length: 6.5 ft

Water Column Height: 9.61 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0001283 ft/min

Solution Method: Bouwer-Rice

v0 = 1701 ft

FALLING HEAD SLUG TEST SMW6

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\smw6f.aqt

Date: 12/24/00 Time: 12:54:36

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E0626.00 Test Location: Riverview, MI

Test Well: SMW6 Test Date: 08/22/00

AQUIFER DATA

Saturated Thickness: 10.5 ft

Anisotropy Ratio (Kz/Kr): 1.

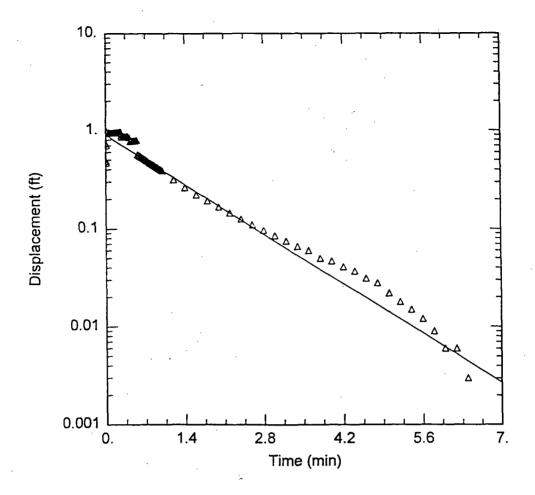
WELL DATA (SMW6)

Initial Displacement: 1.346 ft

Casing Radius: 0.083 ft Screen Length: 5.5 ft

Water Column Height: 5.5 ft

Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.001341 ft/min

Solution Method: Bouwer-Rice

y0 = 1.177 ft

RISING HEAD SLUG TEST SMW6

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\smw6r.aqt

Date: 12/24/00 Time: 12:56:08

PROJECT INFORMATION

Company: URS Corporation

Client: ·BASF

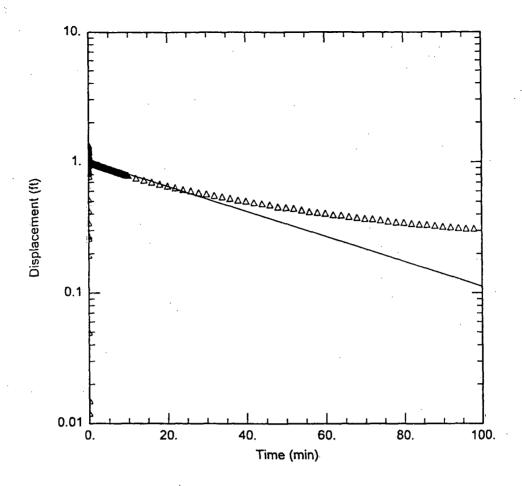
Project: 38-08E06216.00
Test Location: Riverview
Test Well: SMW6
Test Date: 08/22/00

AQUIFER DATA

Saturated Thickness: 10.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW6)

Initial Displacement: 0.988 ft Casing Radius: 0.083 ft Screen Length: 5.5 ft Water Column Height: 5.5 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.003674 ft/min

Solution Method: Bouwer-Rice

y0 = 0.8981 ft

FALLING HEAD SLUG TEST SMW6-99

PROJECT INFORMATION

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\smw6-99f.aqt Time: 12:58:19

Date: 12/24/00

Company: URS Corporation

Client: BASF

Project: 38-08e06216.00 Test Location: Riverview, MI

Test Well: SMW6-99 Test Date: 08/23/00

AQUIFER DATA

Saturated Thickness: 4.25 ft

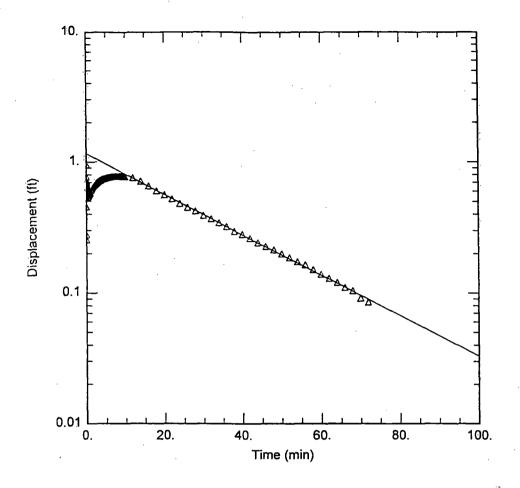
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW6-99)

Initial Displacement: 1.349 ft Casing Radius: 0.083 ft

Screen Length: 3.75 ft

Water Column Height: 4.25 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 3.665E-05 ft/min

y0 = 1.015 ft

RISING HEAD SLUG TEST SMW6-99

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\smw6-99r.aqt
Date: 12/24/00 Time: 12:58:46

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08e06216.00 Test Location: Riverview, MI

Test Well: SMW6-99
Test Date: 08/23/00

AQUIFER DATA

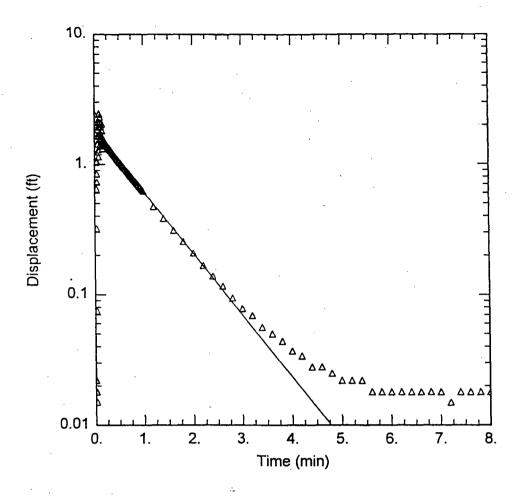
Saturated Thickness: 4.25 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW6-99)

Initial Displacement: 0.95 ft Casing Radius: 0.083 ft

Screen Length: 3.75 ft

Water Column Height: 4.25 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 5.917E-05 ft/min

Solution Method: Bouwer-Rice

y0 = 1.154 ft

FALLING HEAD SLUG TEST IMW6

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\imw6f.aqt

Date: 12/24/00 Time: 12:59:24

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: IMW6
Test Date: 08/22/00

AQUIFER DATA

Saturated Thickness: 10.86 ft

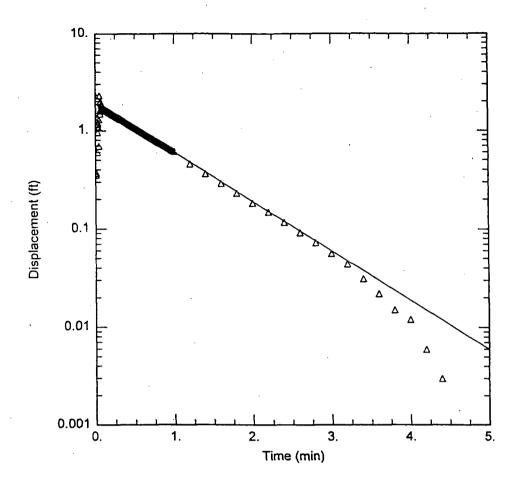
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW6)

Initial Displacement: 2.45 ft

Casing Radius: 0.083 ft Screen Length: 7. ft

Water Column Height: 10.86 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.001352 ft/min

Solution Method: Bouwer-Rice

y0 = 1.827 ft

RISING HEAD SLUG TEST IMW6

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\imw6r.aqt Time: 13:00:00

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: IMW6 Test Date: 08/22/00

AQUIFER DATA

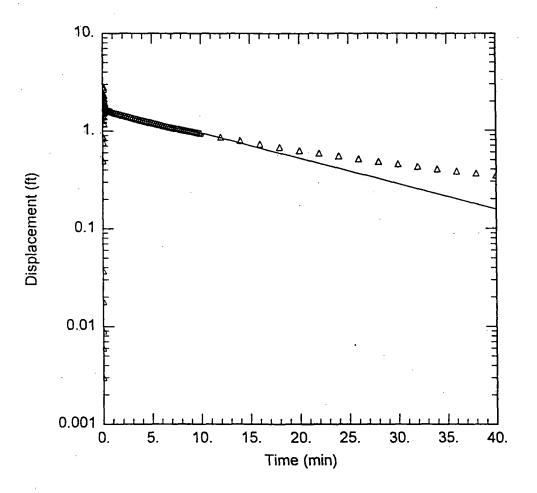
Saturated Thickness: 10.86 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW6)

Initial Displacement: 2.291 ft Casing Radius: 0.083 ft

Screen Length: 7. ft

Water Column Height: 10.86 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.001433 ft/min

Solution Method: Bouwer-Rice

y0 = 1.912 ft

FALLING HEAD SLUG TEST SMW7

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw7f.aqt

Date: 12/24/00 Time: 13:00:36

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW7
Test Date: 08/23/00

AQUIFER DATA

Saturated Thickness: 7.18 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW7)

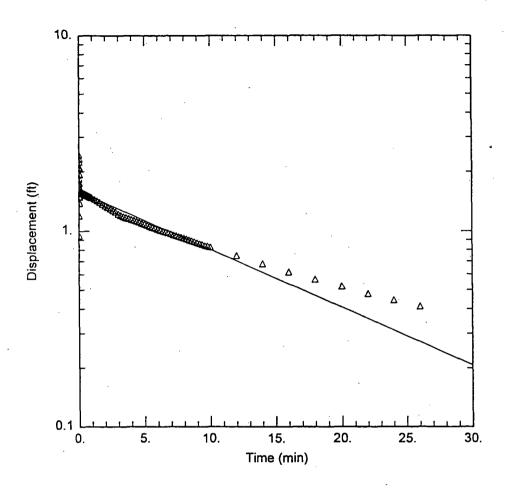
Initial Displacement: 2.811 ft

Casing Radius: 0.083 ft

Screen Length: 2. ft

Water Column Height: 7.21 ft

Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0001987 ft/min

Solution Method: Bouwer-Rice

y0 = 1.74 ft

RISING HEAD SLUG TEST SMW7

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw7r.aqt

Date: 12/24/00 Time: 13:01:33

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW7
Test Date: 08/23/00

AQUIFER DATA

Saturated Thickness: 7.18 ft

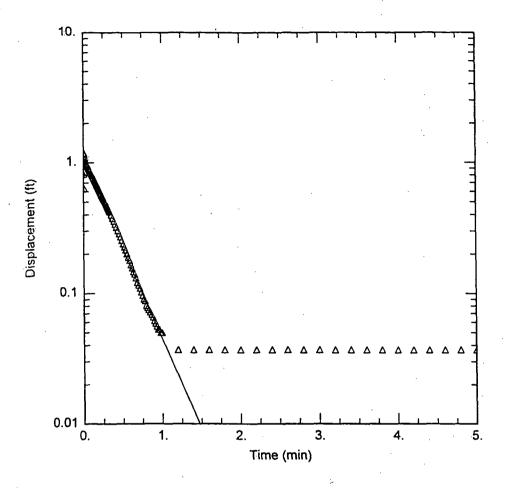
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW7)

Initial Displacement: 2.441 ft Casing Radius: 0.083 ft

Screen Length: 2. ft

Water Column Height: 7.18 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0002239 ft/min

Solution Method: Bouwer-Rice

y0 = 1.59 ft

RISING HEAD SLUG TEST SMW9

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw9r.aqt

Date: 12/24/00

PROJECT INFORMATION

Time: 13:02:48

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: RIverview, MI

Test Well: SMW9
Test Date: 08/22/00

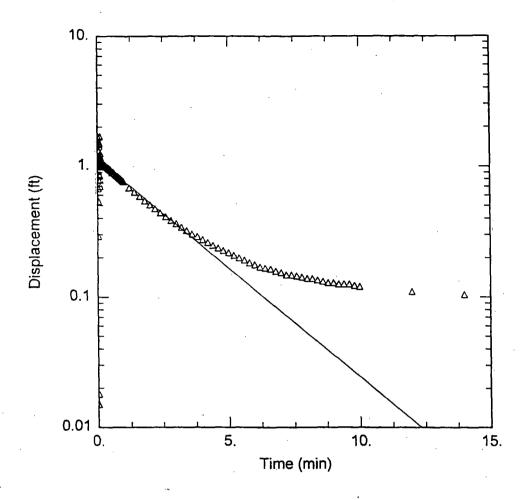
AQUIFER DATA

Saturated Thickness: 7.91 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW9)

Initial Displacement: 1.173 ft
Casing Radius: 0.083 ft
Screen Length: 6. ft

Water Column Height: 3.66 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.01174 ft/min

Solution Method: Bouwer-Rice

y0 = 1.059 ft

FALLING HEAD SLUG TEST IMW9

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\imw9f.aqt

Date: 12/24/00 Time: 13:03:44

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: IMW9
Test Date: 08/22/00

AQUIFER DATA

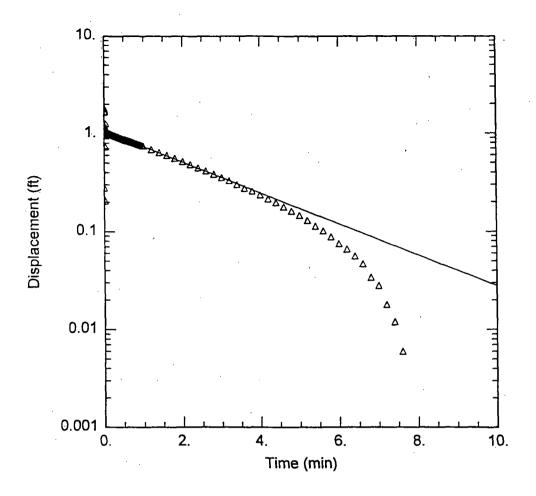
Saturated Thickness: 8.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW9)

Initial Displacement: 1.692 ft Casing Radius: 0.083 ft

Screen Length: 6.5 ft

Water Column Height: 8.33 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0004769 ft/min

Solution Method: Bouwer-Rice

y0 = 1.132 ft

RISING HEAD SLUG TEST IMW9

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\imw9r.aqt

Date: 12/24/00 Time: 13:04:25

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: IMW9
Test Date: 08/22/00

AQUIFER DATA

Saturated Thickness: 8.33 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW9)

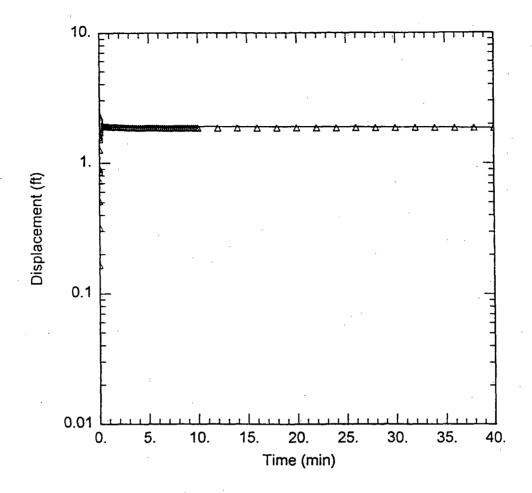
Initial Displacement: 1.801 ft

Casing Radius: 0.083 ft

Screen Length: 6.5 ft

Water Column Height: 8.33 ft

Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0004507 ft/min

Solution Method: Bouwer-Rice

y0 = 1.052 ft

FALLING HEAD SLUG TEST DMW9

Data Set: W:\BASF\Riverview\PhaseII\report\uslug0800\dmw9f.aqt

Date: 12/24/00 Time: 13:05:17

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: DMW9
Test Date: 08/31/00

AQUIFER DATA

Saturated Thickness: 26. ft

Anisotropy Ratio (Kz/Kr): 1.

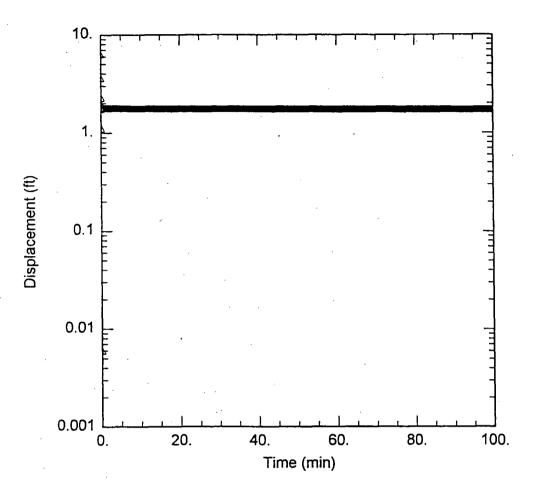
WELL DATA (DMW9)

Initial Displacement: 2.249 ft

Casing Radius: 0.083 ft

Water Column Height: 14. ft Wellbore Radius: 0.333 ft

Screen Length: 7. ft


SOLUTION

Aquifer Model: Unconfined

K = 3.846E-07 ft/min

Solution Method: Bouwer-Rice

y0 = 1.888 ft

RISING HEAD SLUG TEST DMW9

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\DMW9rh.aqt

Date: 12/24/00 Time: 13:06:02

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

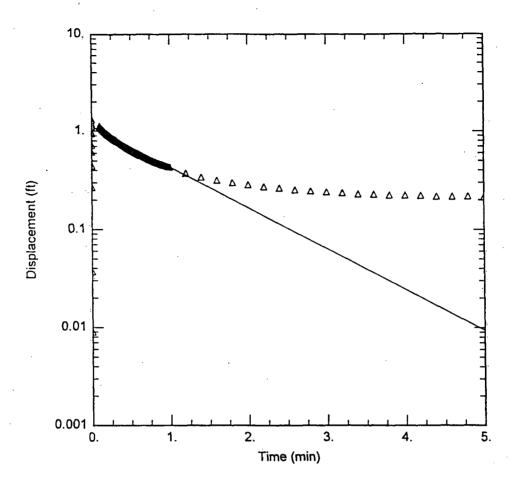
Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: DMW9
Test Date: 11/15/00

AQUIFER DATA

Saturated Thickness: 32.72 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DMW9)


Initial Displacement: 6.303 ft Water Column Height: 20.72 ft Casing Radius: 0.083 ft Wellbore Radius: 0.333 ft

Screen Length: 7. ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 4.33E-07 ft/min y0 = 1.771 ft

FALLING HEAD SLUG TEST SMW10

Data Set: W:\BASF\Riverview\Phasell\report\slug0800\smw10f.aqt

Date: 12/24/00

Time: 13:07:44

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview
Test Well: SMW10
Test Date: 08/22/00

AQUIFER DATA

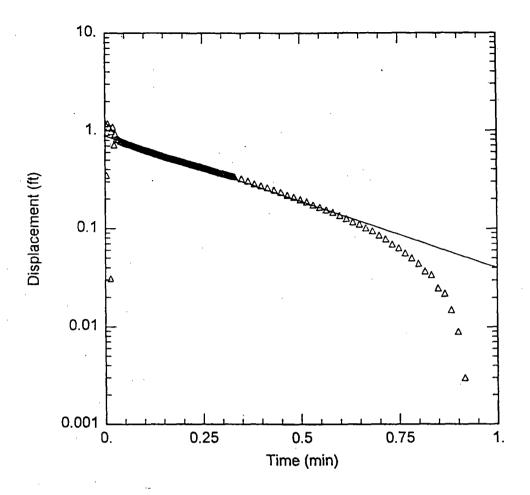
Saturated Thickness: 10.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW10)

Initial Displacement: 1.318 ft Casing Radius: 0.083 ft

Screen Length: 6. ft

Water Column Height: 6.5 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.001035 ft/min

Solution Method: Bouwer-Rice

y0 = 1.127 ft

RISING HEAD SLUG TEST SMW10

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\smw10r.aqt

Date: 12/24/00 Time: 13:08:23

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW10
Test Date: 08/22/00

AQUIFER DATA

Saturated Thickness: 10.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW10)

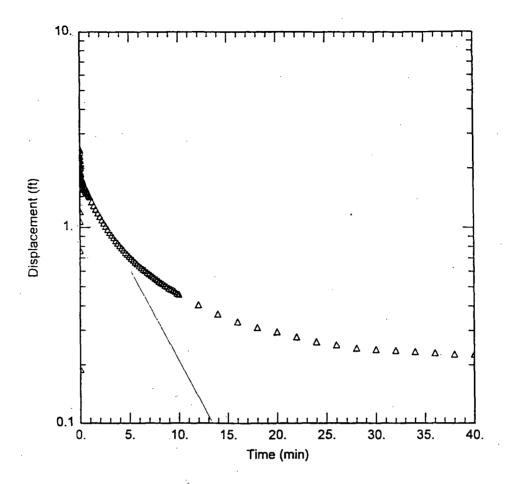
Initial Displacement: 1.197 ft

Casing Radius: 0.083 ft

Screen Length: 6. ft

Water Column Height: 6.5 ft

Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.003351 ft/min

Solution Method: Bouwer-Rice

y0 = 0.8912 ft

FALLING HEAD SLUG TEST IMW10

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\imw10f.aqt
Date: 12/24/00 Time: 13:09:43

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: IMW10
Test Date: 08/22/00

AQUIFER DATA

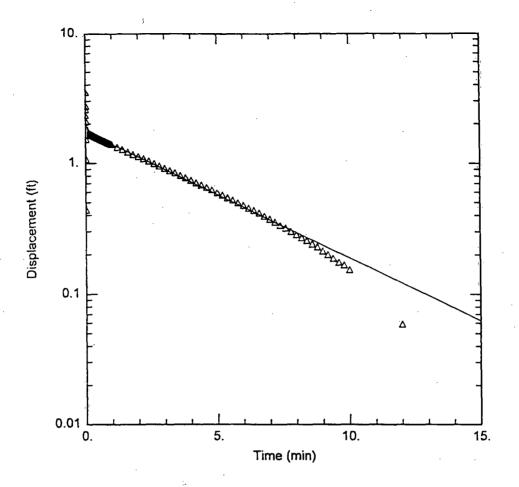
Saturated Thickness: 9.78 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW10)

Initial Displacement: 2.482 ft Casing Radius: 0.083 ft

Screen Length: 6. ft

Water Column Height: 9.78 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0003001 ft/min

Solution Method: Bouwer-Rice

y0 = 1.819 ft

RISING HEAD SLUG TEST IMW10

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\imw10r.aqt
Date: 12/24/00 Time: 13:10:36

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: IMW10
Test Date: IMW10

AQUIFER DATA

Saturated Thickness: 9.78 ft Anisotropy Ratio (Kz/Kr): 1.

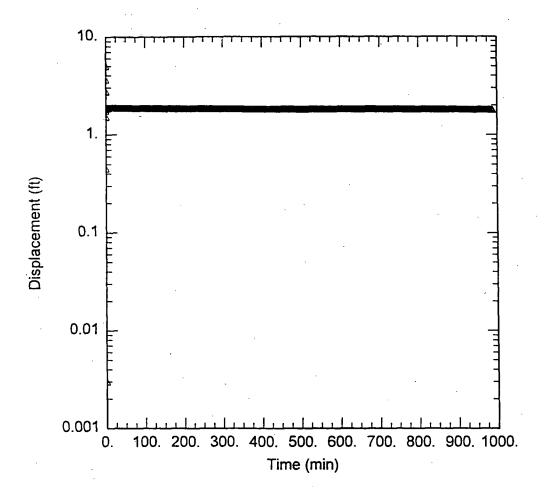
WELL DATA (IMW10)

Initial Displacement: 3.526 ft
Casing Radius: 0.083 ft

Screen Length: 6. ft

Wellbore Radius: 0.333 ft

Water Column Height: 9.78 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0003072 ft/min

Solution Method: Bouwer-Rice

y0 = 1.747 ft

FALLING HEAD SLUG TEST DMW10

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\DMW10f.aqt

Date: 12/24/00

Time: 13:11:41

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: DMW10 Test Date: 11/15-16/00

AQUIFER DATA

Saturated Thickness: 43.5 ft

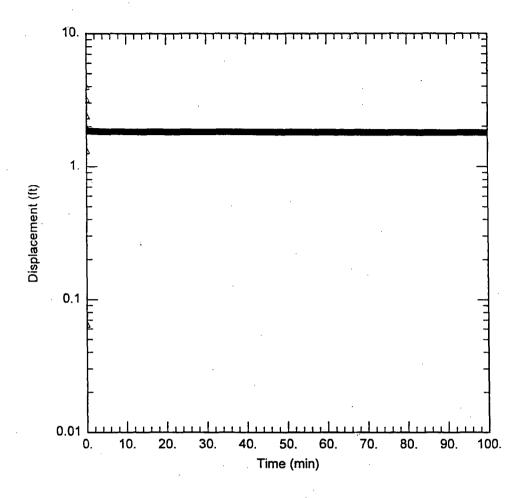
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DMW10)

Initial Displacement: 5. ft Casing Radius: 0.083 ft Screen Length: 7. ft

Water Column Height: 19.5 ft

Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Confined

K = 3.005E-08 ft/min

Solution Method: Bouwer-Rice

y0 = 1.848 ft

RISING HEAD SLUG TEST DMW10

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\DMW10R.aqt Time: 13:12:15

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: DMW10 Test Date: 11/16/00

AQUIFER DATA

Saturated Thickness: 43.5 ft

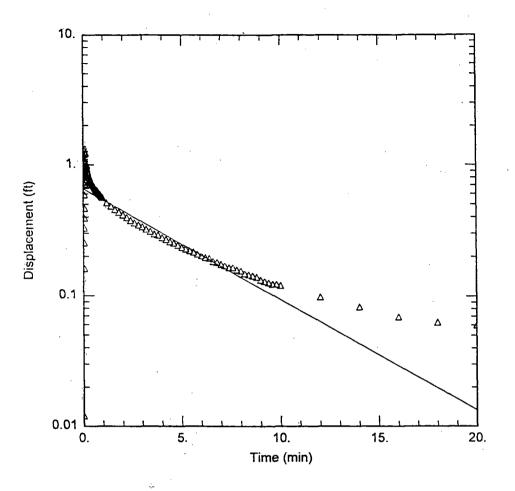
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DMW10)

Initial Displacement: 4. ft Casing Radius: 0.083 ft

Screen Length: 7. ft

Water Column Height: 19.5 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Confined

K = 2.812E-07 ft/min

Solution Method: Bouwer-Rice

y0 = 1.838 ft

FALLING HEAD SLUG TEST IMW11

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\imw11f.aqt

Date: 12/24/00 Time: 13:13:47

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: IMW11
Test Date: 08/23/00

AQUIFER DATA

Saturated Thickness: 10.93 ft

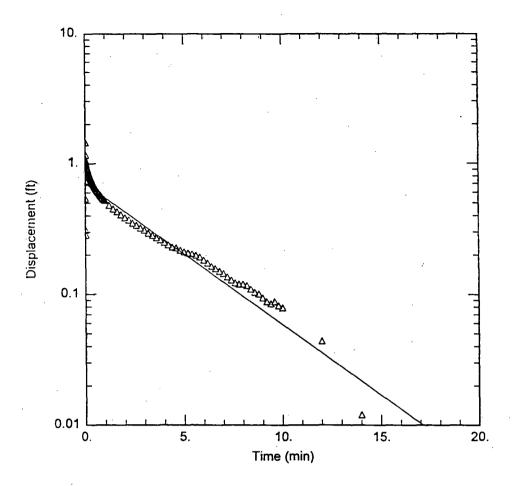
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW11)

Initial Displacement: 1.323 ft

Casing Radius: 0.083 ft Screen Length: 6. ft

Water Column Height: 9.93 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0002431 ft/min

Solution Method: Bouwer-Rice

y0 = 0.657 ft

RISING HEAD SLUG TEST IMW11

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\imw11r.aqt

Date: 12/24/00

PROJECT INFORMATION

Time: 13:14:15

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: IMW11
Test Date: 08/23/00

AQUIFER DATA

Saturated Thickness: 10.93 ft

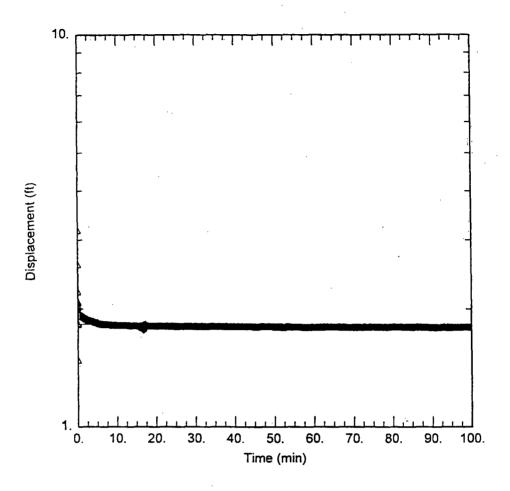
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW11)

Initial Displacement: 1.445 ft

Casing Radius: 0.083 ft Screen Length: 6. ft

Water Column Height: 9.93 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0003097 ft/min

Solution Method: Bouwer-Rice

y0 = 0.7056 ft

FALLING HEAD SLUG TEST DMW11

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\DMW11F.aqt Time: 13:15:02

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: DMW11 Test Date: 11/15/00

AQUIFER DATA

Saturated Thickness: 37.76 ft

Anisotropy Ratio (Kz/Kr): 1.

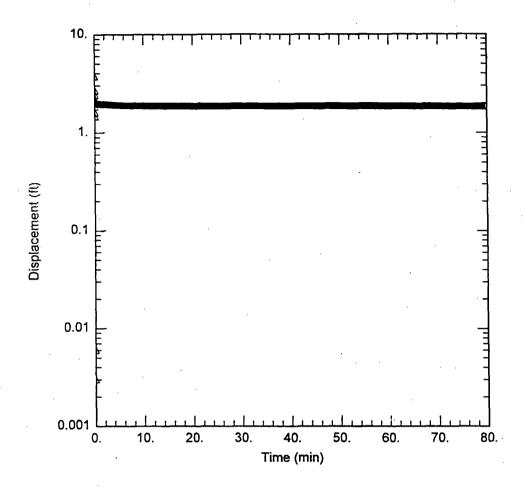
WELL DATA (DMW11)

Initial Displacement: 3.177 ft

Casing Radius: 0.083 ft Screen Length: 7. ft

Water Column Height: 18.76 ft

Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Confined

K = 1.655E-07 ft/min

Solution Method: Bouwer-Rice

y0 = 1.83 ft

RISING HEAD SLUG TEST DMW11

PROJECT INFORMATION

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\DMW11R.aqt
Date: 12/24/00 Time: 13:15:33

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

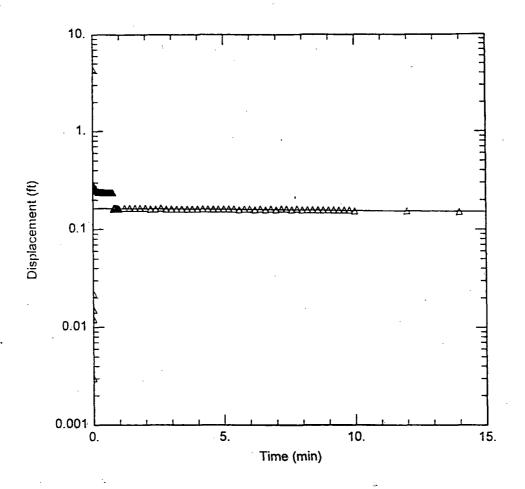
Test Well: DMW11
Test Date: 11/15/00

AQUIFER DATA

Saturated Thickness: 37.76 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DMW11)

Initial Displacement: 3.713 ft Water Column Height: 18.76 ft


Casing Radius: 0.083 ft
Screen Length: 7, ft

Wellbore Radius: 0.333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 5.112E-07 ft/min y0 = 1.896 ft

RISING HEAD SLUG TEST SMW12

PROJECT INFORMATION

Data Set: W:\BASF\Riverview\PhaseII\report\uslug080C\smw12r.aqt Date: 12/24/00 Time: 13:16:10

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW12 Test Date: 08/29/00

AQUIFER DATA

Saturated Thickness: 9.35 ft Anisotropy Ratio (Kz/Kr): 1.

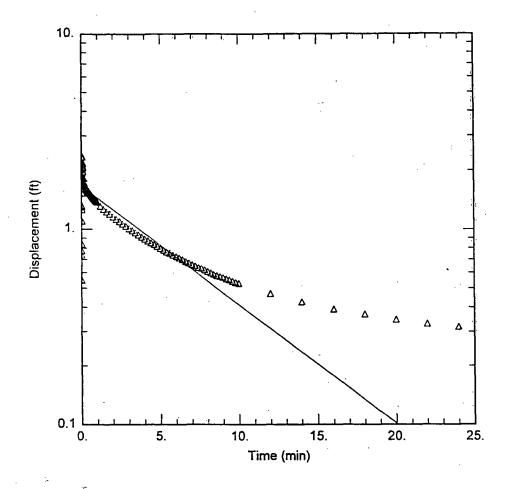
WELL DATA (SMW12)

Initial Displacement: 4.39 ft Casing Radius: 0.083 ft

Screen Length: 7. ft

Water Column Height: 3.05 ft Wellbore Radius: 0.333 ft

Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 1.529E-05 ft/min

Solution Method: Bouwer-Rice

y0 = 0.1635 ft

FALLING HEAD SLUG TEST IMW12

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\imw12f.aqt

Date: 12/24/00

Time: 13:16:50

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: IMW12 Test Date: 08/23/00

AQUIFER DATA

Saturated Thickness: 9.47 ft

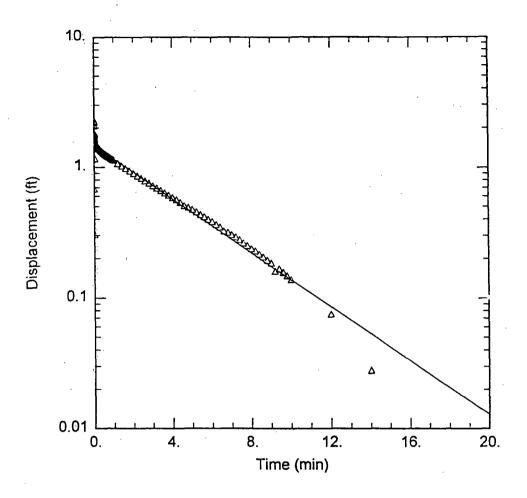
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW12)

Initial Displacement: 2.335 ft Casing Radius: 0.083 ft

Screen Length: 7. ft

Water Column Height: 8.17 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0001465 ft/min

Solution Method: Bouwer-Rice

y0 = 1.662 ft

RISING HEAD SLUG TEST IMW12

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\imw12r.aqt

Date: 12/24/00 Time: 13:17:15

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: IMW12
Test Date: 08/23/00

AQUIFER DATA

Saturated Thickness: 9.47 ft

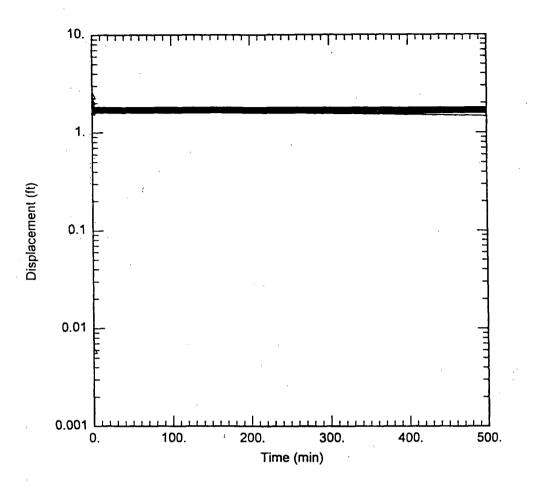
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW12)

Initial Displacement: 2.242 ft

Casing Radius: 0.083 ft Screen Length: 7. ft

Water Column Height: 8.17 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0002483 ft/min

Solution Method: Bouwer-Rice

y0 = 1.468 ft

FALLING HEAD SLUG TEST DMW12

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\DMW12F.aqt

Date: 12/24/00 Time: 13:18:07

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: DMW12
Test Date: 11/15-16/00

AQUIFER DATA.

Saturated Thickness: 36.54 ft

Anisotropy Ratio (Kz/Kr): 1.

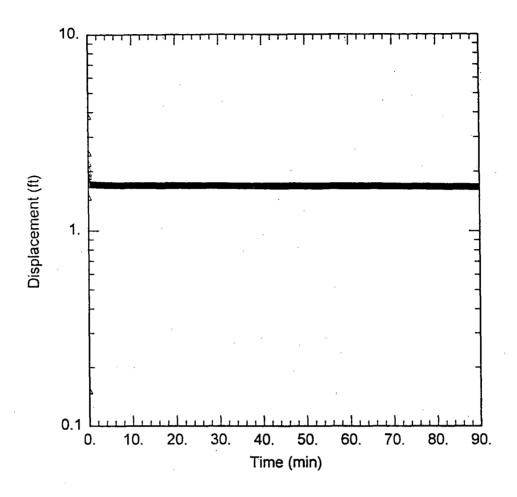
WELL DATA (DWM12)

Initial Displacement: 2.424 ft

Casing Radius: 0.083 ft Screen Length: 7. ft

Water Column Height: 16.54 ft

Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Confined

K = 2.854E-07 ft/min

Solution Method: Bouwer-Rice

y0 = 1.675 ft

RISING HEAD SLUG TEST DMW12

PROJECT INFORMATION

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\DMW12R.aqt
Date: 12/24/00 Time: 13:18:33

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: DMW12
Test Date: 11/15/00

AQUIFER DATA

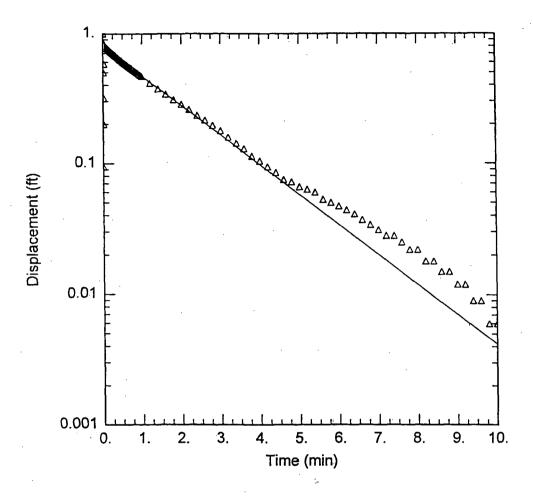
Saturated Thickness: 36.54 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DMW12)

Initial Displacement: 3.832 ft

Casing Radius: 0.083 ft Screen Length: 7. ft

Water Column Height: 16.54 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Confined

K = 3.172E-07 ft/min

Solution Method: Bouwer-Rice

y0 = 1.711 ft

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\smw13r.aqt

Date: 12/24/00 Time: 13:22:07

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW13
Test Date: 08/25/00

AQUIFER DATA

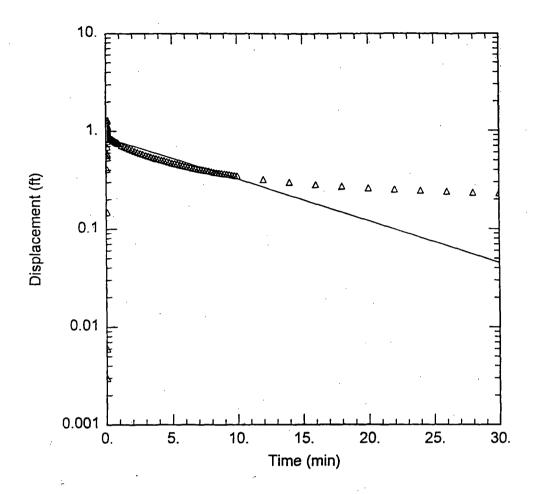
Saturated Thickness: 12.42 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW13)

Initial Displacement: 1. ft Casing Radius: 0.083 ft

Screen Length: 8.5 ft

Water Column Height: 6.42 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.001694 ft/min.

Solution Method: Bouwer-Rice

y0 = 0.7942 ft

FALLING HEAD SLUG TEST IMW13

Data Set: W:\BASF\Riverview\Phasell\report\slug0800\imw13f.aqt

Date: 12/24/00 Time: 13:22:38

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: IMW13
Test Date: 08/24/00

AQUIFER DATA

Saturated Thickness: 11.71 ft

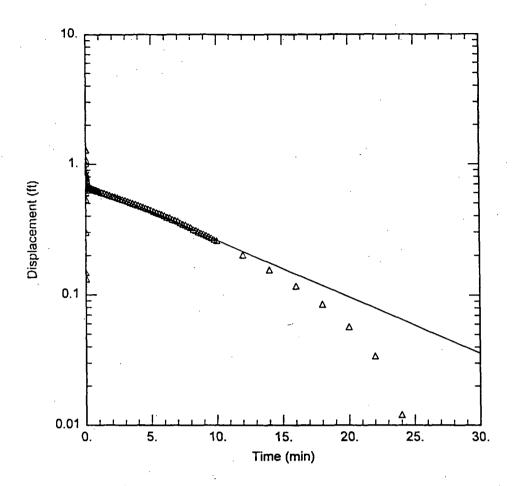
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW13)

Initial Displacement: 1.307 ft Casing Radius: 0.083 ft

Screen Length: 7. ft

Water Column Height: 10.71 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0001103 ft/min

Solution Method: Bouwer-Rice

y0 = 0.8647 ft

Data Set: W:\BASF\Riverview\PhaseII\report\slug0800\imw13r.aqt

Date: 12/24/00 Time: 13:24:14

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: IMW13
Test Date: 08/24/00

AQUIFER DATA

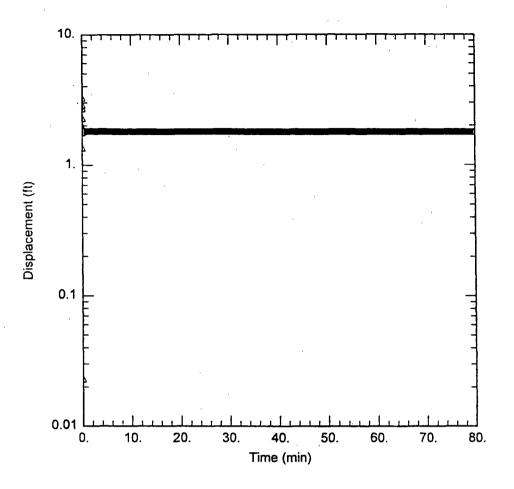
Saturated Thickness: 11.71 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IMW13)

Initial Displacement: 1.281 ft

Casing Radius: 0.083 ft Screen Length: 7. ft

Water Column Height: 10.71 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0001116 ft/min

Solution Method: Bouwer-Rice

y0 = 0.7085 ft

FALLING HEAD SLUG TEST DMW13

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\DMW13F.aqt Date: 12/24/00 Time: 13:24:58

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: DMW13 Test Date: 11/16/00

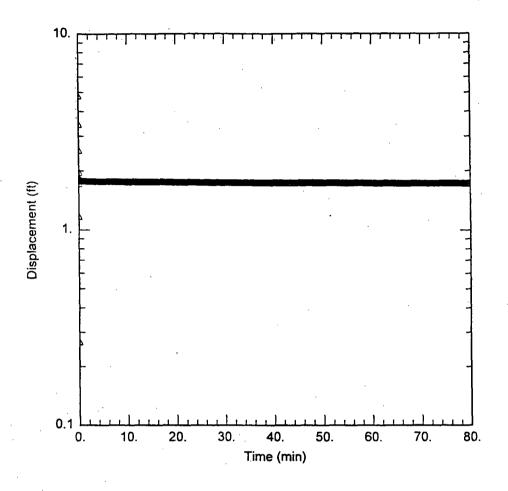
AQUIFER DATA

Saturated Thickness: 39.14 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DMW13)

Initial Displacement: 3.259 ft

Casing Radius: 0.083 ft Screen Length: 7. ft


Water Column Height: 17.14 ft

Wellbore Radius: 0.333 ft

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 2.657E-07 ft/miny0 = 1.809 ft

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\DMW13R.aqt

Date: 12/24/00 Time: 13:25:21

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: DMW13 Test Date: 11/16/00

AQUIFER DATA

Saturated Thickness: 39.14 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DMW13)

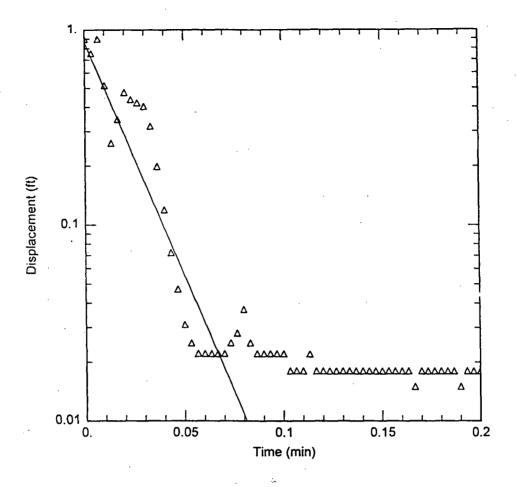
Initial Displacement: 4.804 ft

Casing Radius: 0.083 ft

Screen Length: 7. ft

Water Column Height: 17.14 ft

Wellbore Radius: 0.33 ft


SOLUTION

Aquifer Model: Confined

K = 3.166E-07 ft/min

Solution Method: Bouwer-Rice

y0 = 1.762 ft

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw14r.aqt

Date: 12/24/00 Time: 13:26:00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: SMW14
Test Date: 08/23/00

AQUIFER DATA

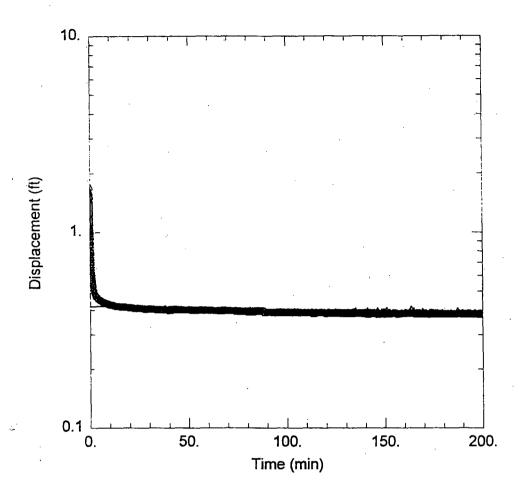
Saturated Thickness: 12.46 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW14)

Initial Displacement: 0.894 ft

Casing Radius: 0.083 ft Screen Length: 6. ft

Water Column Height: 5.46 ft
Wellbore Radius: 0.333 ft
Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.2241 ft/min

Solution Method: Bouwer-Rice

y0 = 0.8619 ft

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\SMW15R.aqt Time: 13:27:11

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW15 Test Date: 11/16/00

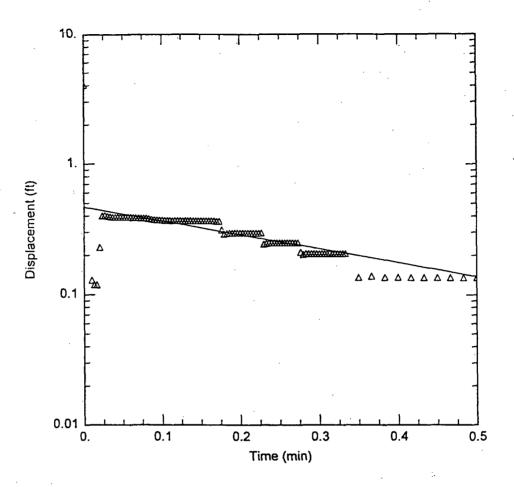
AQUIFER DATA

Saturated Thickness: 10.84 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW15)

Initial Displacement: 1.716 ft Casing Radius: 0.083 ft Screen Length: 6. ft

Water Column Height: 9.5 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 2.65E-06 ft/min

Solution Method: Bouwer-Rice

y0 = 0.4188 ft

Data Set: W:\BASF\Riverview\PhaseII\report\uslug0800\smw16r.aqt Time: 13:27:56

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW16 Test Date: 08/29/00

AQUIFER DATA

Saturated Thickness: 2.61 ft

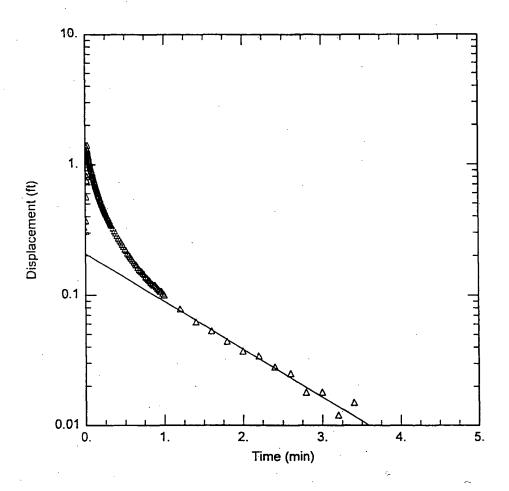
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW16)

Initial Displacement: 4.04 ft Casing Radius: 0.083 ft

Screen Length: 4.5 ft

Water Column Height: 2.61 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.0117 ft/min

Solution Method: Bouwer-Rice

y0 = 0.4669 ft

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw17r.aqt Time: 13:28:34

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW17 Test Date: 08/23/00

AQUIFER DATA

Saturated Thickness: 11.79 ft

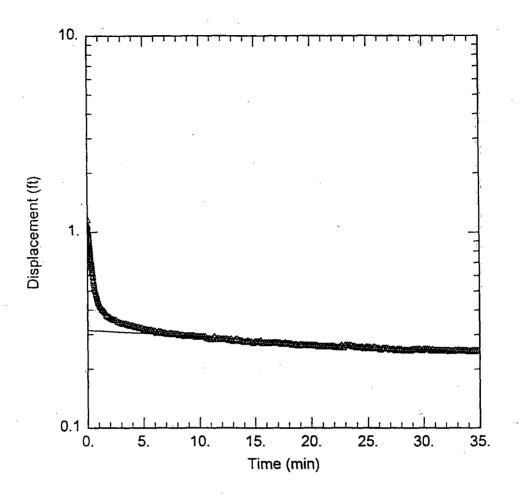
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW17)

Initial Displacement: 1.403 ft Casing Radius: 0.083 ft

Screen Length: 9.5 ft

Water Column Height: 8.75 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.002729 ft/min

Solution Method: Bouwer-Rice

y0 = 0.2081 ft

Data Set: W:\BASF\Riverview\PhaseII\report\slug1100\SMW18rh3.aqt
Date: 12/24/00 Time: 13:29:23

PROJECT INFORMATION

Company: URS Corporation
Client: BASF Riverview
Project: 38-08E06216.00
Test Location: Riverview, MI

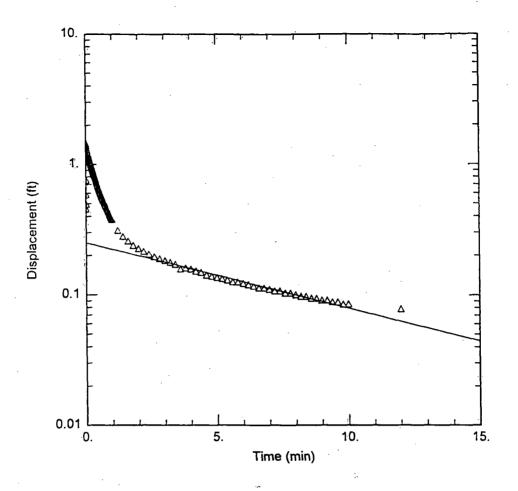
Test Well: SMW18
Test Date: 11/17/00

AQUIFER DATA

Saturated Thickness: 11.36 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW18)

Initial Displacement: 1.161 ft Casing Radius: 0.083 ft Screen Length: 5.5 ft Water Column Height: 4.36 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 3.156E-05 ft/min

Solution Method: Bouwer-Rice

v0 = 0.315 ft

PROJECT INFORMATION

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw19r.aqt Time: 13:30:01

Date: 12/24/00

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW19 Test Date: 08/23/00

AQUIFER DATA

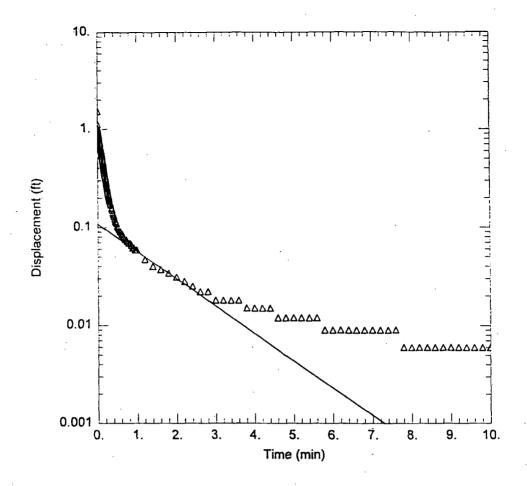
Saturated Thickness: 12.5 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW19)

Initial Displacement: 1.432 ft Casing Radius: 0.083 ft Screen Length: 5.5 ft

Water Column Height: 5.5 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.0005045 ft/min

Solution Method: Bouwer-Rice

y0 = 0.2504 ft

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw20r.aqt

Date: 12/24/00 Time: 13:30:29

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview, MI

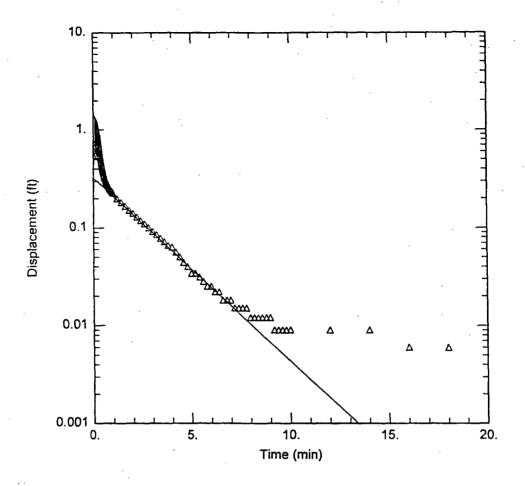
Test Well: SMW20
Test Date: 08/25/00

AQUIFER DATA

Saturated Thickness: 8.36 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW20)

Initial Displacement: 1.529 ft


Casing Radius: 0.083 ft Screen Length: 6. ft Water Column Height: 3.36 ft Wellbore Radius: 0.333 ft

Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.002312 ft/min y0 = 0.1081 ft

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw21r.aqt

Date: 12/24/00 Time: 13:30:55

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW21
Test Date: 08/25/00

AQUIFER DATA

Saturated Thickness: 7. ft

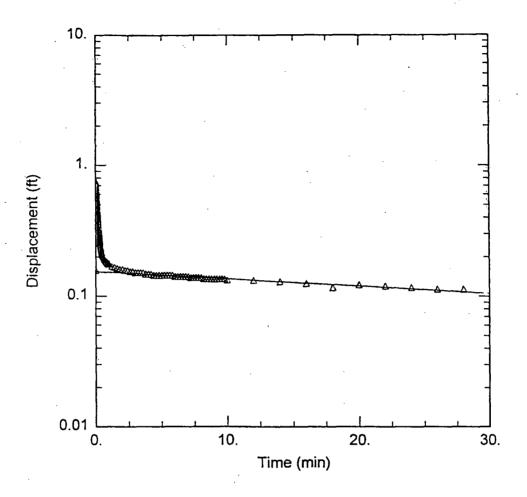
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW21)

Initial Displacement: 1.341 ft

Casing Radius: 0.083 ft Screen Length: 6. ft

Water Column Height: 5. ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.001794 ft/min

Solution Method: Bouwer-Rice

y0 = 0.3242 ft

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw22r.aqt

Date: 12/24/00 Time: 13:31:28

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

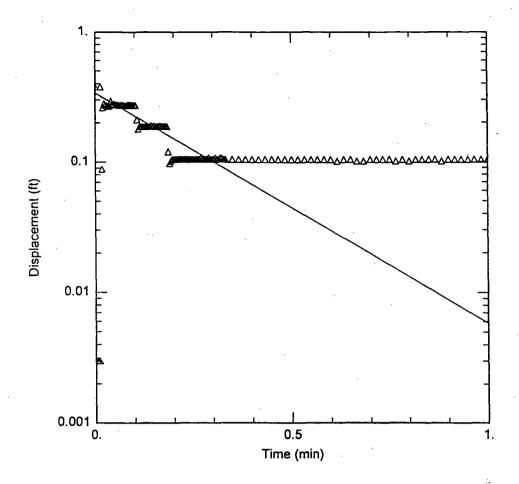
Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW22 Test Date: 08/24/00

AQUIFER DATA

Saturated Thickness: 4.94 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW22)


Initial Displacement: 0.751 ft Water Column Height: 2.94 ft Casing Radius: 0.083 ft Wellbore Radius: 0.333 ft Screen Length: 6. ft

Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 4.472E-05 ft/miny0 = 0.1537 ft

Data Set: W:\BASF\Riverview\PhaseII\report\uslug0800\smw23r.aqt

Date: 12/24/00 Time: 13:32:43

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

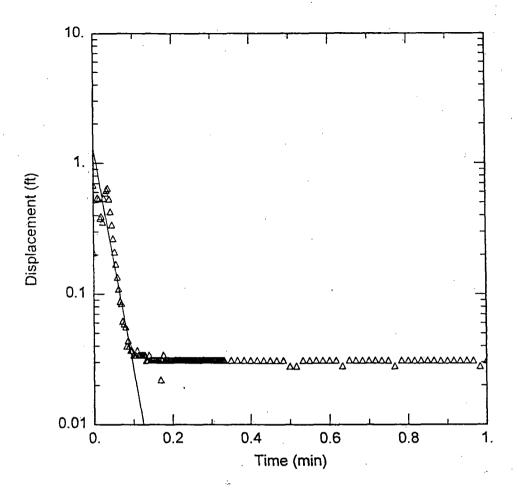
Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW23 Test Date: 08/28/00

AQUIFER DATA

Saturated Thickness: 9.15 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW23)


Water Column Height: 3.15 ft Initial Displacement: 0.378 ft Casing Radius: 0.083 ft Wellbore Radius: 0.333 ft Screen Length: 5.5 ft

Gravel Pack Porosity: 0.2

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.01528 ft/miny0 = 0.3399 ft

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\smw24r.aqt

Date: 12/24/00 Time: 13:33:29

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

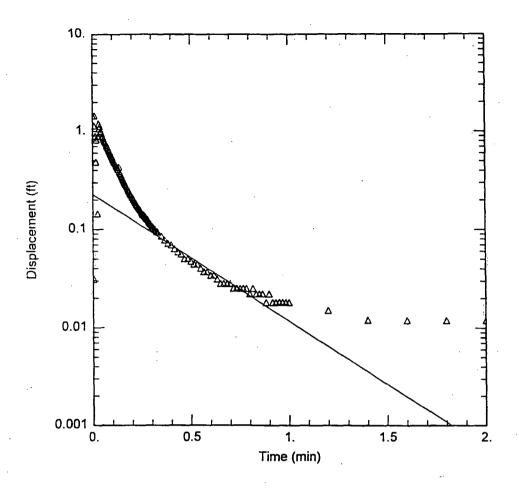
Test Well: SMW24 Test Date: 08/24/00

AQUIFER DATA

Saturated Thickness: 8.27 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW24)

Initial Displacement: 0.68 ft Casing Radius: 0.083 ft Screen Length: 9. ft Water Column Height: 7.77 ft
Wellbore Radius: 0.333 ft
Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.1348 ft/min

Solution Method: Bouwer-Rice

y0 = 1.305 ft

Data Set: W:\BASF\Riverview\Phasell\report\pslug0800\smw25r.aqt

Date: 12/24/00

Time: 13:33:59

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00
Test Location: Riverview, MI

Test Well: SMW25
Test Date: 08/24/00

AQUIFER DATA

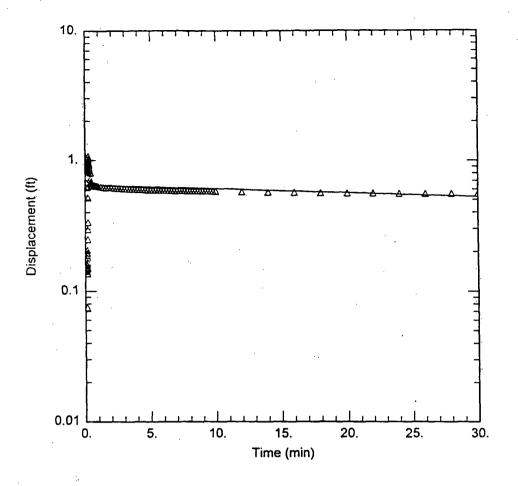
Saturated Thickness: 8.89 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW25)

Initial Displacement: 1.452 ft

Casing Radius: 0.089 ft Screen Length: 9. ft Water Column Height: 8.89 ft
Wellbore Radius: 0.333 ft
Gravel Pack Porosity: 0.2


SOLUTION

Aquifer Model: Unconfined

K = 0.01164 ft/min

Solution Method: Bouwer-Rice

y0 = 0.2274 ft

FALLING HEAD SLUG TEST SMW26

Data Set: W:\BASF\Riverview\PhaseII\report\uslug0800\smw26f.aqt Time: 13:34:51

Date: 12/24/00

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW26 Test Date: 08/30/00

AQUIFER DATA

Saturated Thickness: 10.06 ft

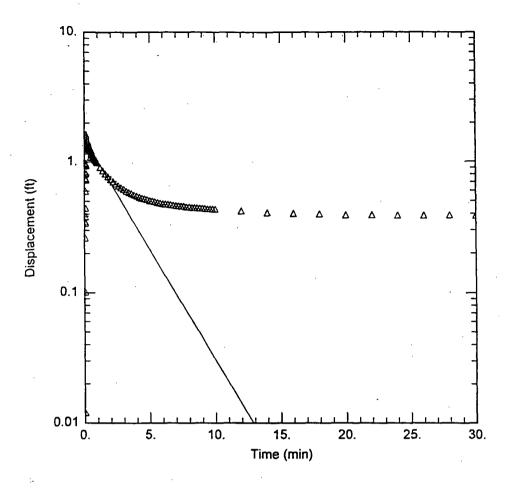
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW26)

Initial Displacement: 1.072 ft

Casing Radius: 0.083 ft Screen Length: 9.5 ft

Water Column Height: 10.06 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 6.377E-06 ft/min

Solution Method: Bouwer-Rice

y0 = 0.6477 ft

FALLING HEAD SLUG TEST SMW27

Data Set: W:\BASF\Riverview\PhaseII\report\uslug0800\smw27f.aqt

Date: 12/24/00 Time: 13:36:25

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

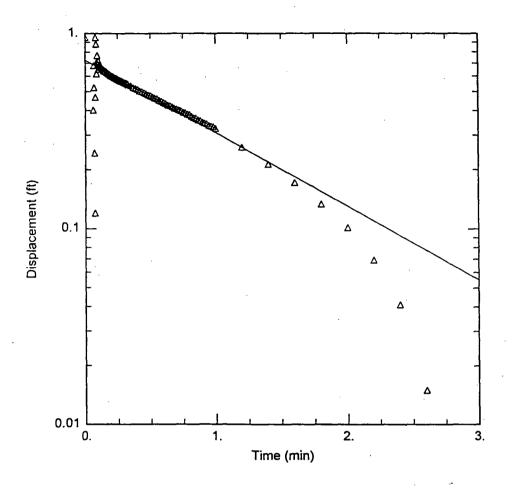
Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW27
Test Date: 08/31/00

AQUIFER DATA

Saturated Thickness: 14.42 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW27)


Initial Displacement: 1.631 ft Water Column Height: 14.42 ft
Casing Radius: 0.083 ft Wallbore Radius: 0.333 ft

Casing Radius: 0.083 ft Wellbore Radius: 0.333 ft Screen Length: 12. ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0003177 ft/min y0 = 1.496 ft

Data Set: W:\BASF\Riverview\PhaseII\report\uslug0800\smw27r.aqt
Date: 12/24/00 Time: 13:37:06

PROJECT INFORMATION

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: SMW27
Test Date: 08/31/00

AQUIFER DATA

Saturated Thickness: 14.42 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (SMW27)

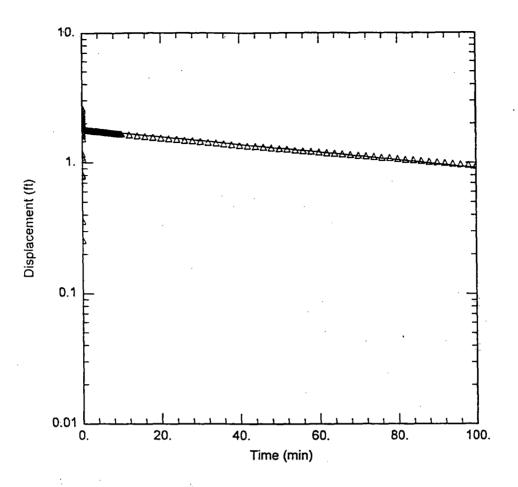
Initial Displacement: 0.953 ft

Casing Radius: 0.083 ft

Screen Length: 12. ft

Water Column Height: 14.42 ft

Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 0.0007014 ft/min

Solution Method: Bouwer-Rice

y0 = 0.7272 ft

FALLING HEAD SLUG TEST PZ1

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\pz1f.aqt

Date: 12/24/00 Time: 13:37:48

PROJECT INFORMATION

Company: URS Cororation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: PZ1
Test Date: 08/24/00

AQUIFER DATA

Saturated Thickness: 7.3 ft

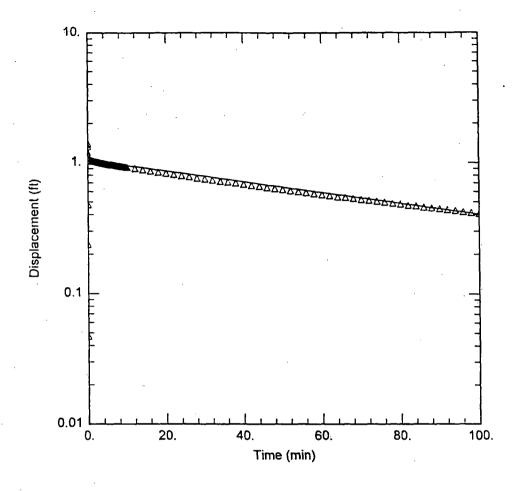
Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZ1)

Initial Displacement: 2.601 ft Casing Radius: 0.083 ft

Screen Length: 3. ft

Water Column Height: 5.3 ft Wellbore Radius: 0.333 ft


SOLUTION

Aquifer Model: Unconfined

K = 1.186E-05 ft/min

Solution Method: Bouwer-Rice

y0 = 1.803 ft

RISING HEAD SLUG TEST PZ1

Data Set: W:\BASF\Riverview\PhaseII\report\pslug0800\pz1r.aqt

Date: 12/24/00

PROJECT INFORMATION

Time: 13:38:19

Company: URS Corporation

Client: BASF

Project: 38-08E06216.00 Test Location: Riverview, MI

Test Well: PZ1 Test Date: 08/24/00

AQUIFER DATA

Saturated Thickness: 7.3 ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZ 1)

SOLUTION

Initial Displacement: 1.4 ft

Casing Radius: 0.083 ft

Water Column Height: 5.3 ft Wellbore Radius: 0.333 ft

Screen Length: 3. ft

Solution Method: Bouwer-Rice

Aquifer Model: Unconfined

K = 1.661E-05 ft/min

y0 = 1.044 ft

DATA SUMMARY Shrader Lab Packages

TO THE LESS CONTRACTOR CONTRACTOR CONTRACTOR

SAMPLE#	DMW-09 (02'-04')	DMW-09 (06'-08')	DMW-09 (10'-12')	DMW-09 (26'-28')	DMW-10 (02'-04')	DMW-10 (08'-10')	DMW-10 (10'-12')
	1997001 7/27/00	1997002 7/27/00	1997003 7/27/00	J007001 8/2/00	J001001 7/31/00	J001002 7/31/00	J001003 7/31/00
PARAMETER	mg/kg						
1,2-Dichlorobenzene	0.3 ND	0.3 ND	0.3 ND	0.1 ND	0.3 ND	0.2 ND	0.1 ND
1,2-Dichloroethane	0.4 ND	0.4 ND	0.4 ND	0.3 ND	0.4 ND	0.2 ND	0.2 ND
1,2-Dichloropropane	0.2 ND	0.2 ND	0.3 ND	0.2 ND	0.2 ND	0.1 ND	0.09 ND
1,4-Dichlorobenzene	0.2 ND	0.2 ND	0.2 ND	0.08 ND	0.2 ND	0.33	0.08 ND
Acetone	8 ND	3 ND	3 ND	2 ND	3 ND	2 ND	1 ND
Benzene	0.07 ND	0.23	0.08 ND	0.05 ND	0.06 ND	0.19	0.03 ND
Chlorobenzene	0.08 ND	0.08 ND	0.1 ND	0.04 ND	0.08 ND	0.05 ND	0.03 ND
Ethylbenzene	0.2 ND	0.2 N!)	0.2 ND	0.09 ND	0.2 ND	0.1 ND	0.07 ND
m,p-Xylene	0.09 ND '	0.09 ND	0.1 ND	0.05 ND	0.19	0.23	0.04 ND
Methyl ethyl ketone	2 ND	2 ND	2 ND	I ND	1 ND	0.8 ND	0.6 ND
Methylene chloride	0.2 ND	0.2 ND	0.2 ND	0.1 ND	0.2 NĎ	0.1 ND	0.09 ND
o-Xylene	0.09 ND	0.1 ND	0.1 ND	0.06 ND	0.13	0.13	0.04 ND
Styrene	0.09 ND	0.08 ND	0.1 ND	0.33	0.09 ND	0.05 ND	0.04 ND
Tetrachloroethene	0.2 ND	0.2 ND	0.3 ND	0.1 ND	0.2 ND	0.19	0.1 ND
Toluene	0.09 ND	0.2	0.1 ND	0.4	1.2	1.3	0.04 ND
Trichloroethene	0.2 ND	0.2 ND	0.3 ND	0.2 ND	0.2 ND	0.1 ND	0.09 ND
Vinyl chloride	0.1 ND	0.1 ND	0.1 ND	0.09 ND	0.1 ND	0.07 ND	0.05 ND

Page: 1 of 22

DATA SUMMARY Shrader Lab Packages

The term of the first time to be a first that the term of the term

SAMPLE #	DMW-10 (24'-26') J007002 8/2/00	DMW-11 (04'-06') J001006 7/31/00	DMW-11 (06'-08') J001008 7/31/00	DMW-11 (24'-26') J008001 8/3/00	DMW-110 (04'-06') J001007 7/31/00	DMW-12 (04'-06') J002007 8/1/00	DMW-12 (06'-08') J002004 8/1/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2-Dichlorobenzene	0.2 ND	0.2 ND	0.2 ND	0.1 ND	0.2 ND	0.1 ND	1.2
1,2-Dichloroethane	0.2 ND	0.2 ND	0.3 ND	0.2 ND	0.2 ND	0.2 ND	0.3 ND
1,2-Dichloropropane	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND
1,4-Dichlorobenzene	0.1 ND	0.1 ND	0.1 ND	0.07 ND	0.1 ND	0.08 ND	6.8
Acetone	2 ND	2 ND	2 ND	4 ND	440	1 ND	2 ND
Benzene	0.04 ND	0.16	0.05 ND	0.03 ND	0.21	0.03 ND	0.05 ND
Chlorobenzene	0.05 ND	0.05 ND	0.06 ND	0.04 ND	0.05 ND	0.04 ND	0.06 ND
Ethylbenzene	0.1 ND	0.33	0.1 ND	0.08 ND	0.2	0.09 ND	0.1 ND
m,p-Xylene	0.05 ND	1.6	0.37	0.04 ND	0.9	0.04 ND	0.07 ND
Methyl ethyl ketone	2 ND	2 ND	1 ND	1 ND	2 ND	0.7 ND	I ND
Methylene chloride	0.1 ND	4.5	0.2 ND	0.09 ND	27	0.1 ND	0.1 ND
o-Xylene	0.06 ND	0.47	0.2	0.05 ND	0.25	0.05 ND	0.08 ND
Styrene	0.19	0.06 ND	0.8	0.04 ND	1.2	0.04 ND	0.06 ND
Tetrachloroethene	0.1 ND	0.2 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND
Toluene	0.23	7.4	1.6	0.04 ND	2.7	0.04 ND	0.07 ND
Trichloroethene	0.1 ND	0.1 ND	4.3	0.1 ND	0.1 ND	0.1 ND	0.2 ND
Vinyl chloride	0.07 ND	0.08 ND	0.72	0.06 ND	0.08 ND	0.06 ND	0.09 ND

DATA SUMMARY Shrader Lab Packages

SAMPLE #	DMW-12 (10'-12') J002005 8/1/00	DMW-12 (18'-20') J002006 8/1/00	DMW-12 (28'-30') J008004 8/3/00	DMW-120 (28'-30') J008003 8/3/00	DMW-13 (04'-06') J002001 7/31/00	DMW-13 (06'-08') J002002 7/31/00	DMW-13 (10'-12') J002003 7/31/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2-Dichlorobenzene	0.3 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.2 ND
1,2-Dichloroethane	0.4 ND	0.3 ND	0.2 ND	0.2 ND	0.2 ND	0.3 ND	0.2 ND
1,2-Dichloropropane	0.2 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND c	0.71	0.1 ND
1,4-Dichlorobenzene	0.2 ND	0.1 ND	0.08 ND	0.09 ND	0.09 ND	0.1 ND	0.1 ND
Acetone	3 ND	2 ND	3 ND	2 ND	2 ND	2 ND	2 ND
Benzene	0.07 ND	0.05 ND	0.03 ND	0.03 ND	0.04 ND	0.24	0.04 ND
Chlorobenzene	0.08 ND	0.06 ND	0.04 ND	0.04 ND	0.05 ND	0.06 ND	0.05 ND
Ethylbenzene	0.2 ND	0.1 ND	0.09 ND	0.1 ND	0.1 ND	0.2	0.1 ND
m,p-Xylene	0.51	0.06 ND	0.04 ND	0.21	0.05 ND	0.61	0.06 ND
Methyl ethyl ketone	2 ND	1 ND	1 ND	2 ND	0.9 ND	2 ND	1 ND
Methylene chloride	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND
o-Xylene	0.1 ND	0.07 ND	0.05 ND	0.06 ND	0.06 ND	0.38	0.07 ND
Styrene	0.09 ND	0.06 ND	0.04 ND	0.05 ND	0.05 ND	0.3	0.05 ND
Tetrachloroethene	0.2 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	4.6	0.2 ND
Toluene	0.09 ND	0.06 ND	0.04 ND	0.05 ND	0.05 ND	0.66	0.06 ND
Trichloroethene	0.2 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.89	0.1 ND
Vinyl chloride	0.1 ND	0.09 ND	0.06 ND	0.06 ND	0.08 ND	0.1 ND	0.08 ND

The first training that the first training that the first training the first training trainin

DATA SUMMARY Shrader Lab Packages

SAMPLE #	DMW-13 (26'-28') J008002 8/3/00	1MW-01 (02'-04') J008010 8/7/00	IMW-01 (06'-08') J008011 8/7/00	IMW-05 (02'-04') J008022 8/8/00	IMW-05 (04'-06') J008021 8/8/00	IMW-06 (02'-04') J008017 8/8/00	IMW-06 (06'-08') J008018 8/8/00
PARAMETER	mg/kg						
1,2-Dichlorobenzene	0.1 ND	0.1 ND	0.2 ND	0.3 ND	0.2 ND	0.2 ND	0.2 ND
1,2-Dichloroethane	0.2 ND	0.2 ND	0.2 ND	0.3 ND	0.3 ND	0.4 ND	2.5
1,2-Dichloropropane	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.69
1,4-Dichlorobenzene	0.07 ND	0.08 ND	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.1 ND
Acetone	1 ND	20	3 ND	4 ND	4 ND	4 ND	5 ND
Benzene	0.5	0.03 ND	0.04 ND	0.21	0.06 ND	0.07 ND	0.06 ND
Chlorobenzene	0.04 ND	0.04 ND	0.05 ND	0.08 ND	0.08 ND	0.08 ND	0.07 ND
Ethylbenzene	0.66	0.09 ND	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
m,p-Xylene	1.8	0.05 ND	0.05 ND	0.19	0.2	0.09 ND	0.08 ND
Methyl ethyl ketone	2 ND	1 ND	1 ND	1 ND	1 ND	2 ND	1 ND
Methylene chloride	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
o-Xylene	0.63	0.05 ND	0.07 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Styrene	0.04 ND	0.04 ND	0.05 ND	0.08 ND	0.08 ND	0.09 ND	0.08 ND
Tetrachloroethene	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.2 · ND	0.2 ND	0.2 ND
Toluene	0.22	0.05 ND	0.05 ND	0.12	0.22	0.09 ND	0.34
Trichloroethene	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Vinyl chloride	0.06 ND	0.07 ND	0.08 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND

DATA SUMMARY Shrader Lab Packages

SAMPLE #	IMW-060 (06'-08')	SMW-04 (10'-12')	SMW-14 (06'-08')	SMW-15 (04'-06')	SMW-16 (0'-02')	SMW-17 (0'-02')	SMW-18 (0'-02')
	J008019 8/8/00	J008006 8/4/00	J008009 8/7/00	J008008 8/7/00	J021001 8/9/00	J021002 8/9/00	J021003 8/9/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2-Dichlorobenzene	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND
1,2-Dichloroethane	4	0.2 ND	0.2 ND	0.2 ND	0.3 ND	0.2 ND	0.3 ND
1,2-Dichloropropane	0.92	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
1,4-Dichlorobenzene	0.2 ND	0.08 ND	0.07 ND	0.08 ND	0.08 ND	0.1 ND	0.06 ND
Acetone	35	2 ND	2 ND	2 ND	2 ND	2 ND	3 ND
Benzene	0.07 ND	0.04 ND	0.04 ND	0.04 ND	0.06 ND	0.04 ND	0.06 ND
Chlorobenzene	0.09 ND	0.04 ND	0.04 ND	0.04 ND	0.04 ND	0.05 ND	0.04 ND
Ethylbenzene	0.2 ND	0.09 ND	0.09 ND	0.1 ND	0.1 ND	0.1 ND	0.36
m,p-Xylene	0.19	0.05 ND	0.04 ND	0.05 ND	0.05 ND	0.05 ND	0.67
Methyl ethyl ketone	2 ND	0.8 ND	2 ND	1 ND	1 ND	0.9 ND	1 ND
Methylene chloride	5.7	30	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
o-Xylene	0.1 ND	0.06 ND	0.05 ND	0.06 ND	0.06 ND	0.06 ND	0.52
Styrene	0.09 ND	0.05 ND	0.04 ND	0.05 ND	0.05 ND	0.05 ND	0.04 ND
Tetrachloroethene	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Toluene	0.55	0.05 ND	0.04 ND	0.05 ND	0.05 ND	0.05 ND	0.65
Trichloroethene	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
Vinyl chloride	1.2	0.07 ND	0.06 ND	0.08 ND	0.1 ND	0.07 ND	0.1 ND

Page: 5 of 22

DATA SUMMARY Shrader Lab Packages

the first of the first that the first that the first test that the

SAMPLE # PARAMETER	SMW-19 (0'-02') J021004 8/9/00	SMW-20 (04'-06') J008016 8/7/00	SMW-21 (02'-04') J008012 8/7/00	SMW-22 (04'-06') J008013 8/7/00	SMW-23 (04'-06') J008020 8/8/00	TP-1 COMP J069007 8/31/00	TP-2 COMP J069002 8/30/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2-Dichlorobenzene	0.1 ND	0.2 Nウ	0.2 ND	0.2 ND	0.2 ND	0.09 ND	0.1 ND
1,2-Dichloroethane	0.4 ND	0.3 1 D	0.3 ND	0.2 ND	0.3 ND	0.2 ND	0.3 ND
1,2-Dichloropropane	0.3 ND	0.2 ND	0.2 NĎ	0.1 ND	0.2 ND	0.1 ND	0.2 ND
1,4-Dichlorobenzene	0.09 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.05 ND	0.08 ND
Acetone	3 ND	4 ND	5 ND	4 ND	4 ND	3 ND	4 ND
Benzene	0.08 ND	0.05 ND	0.05 ND	0.04 ND	0.05 ND	0.03 ND	0.8
Chlorobenzene	0.06 ND	0.06 ND	0.06 ND	0.05 ND	0.06 ND	0.04 ND	0.05 ND
Ethylbenzene	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.08 ND	0.1 ND
m,p-Xylene	0.06 ND	0.06 ND	0.28	0.05 ND	0.06 ND	0.22	0.18
Methyl ethyl ketone	2 ND	1 ND	2 ND	1 ND	1 ND	l NĎ	2 ND
Methylene chloride	0.2 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
o-Xylene	0.08 ND	0.08 ND	0.08 ND	0.06 ND	0.08 ND	0.11	0.07 ND
Styrene	0.06 ND	0.06 ND	0.07 ND	0.05 ND	0.06 ND	0.04 ND	0.06 ND
Tetrachloroethene	0.2 ND	0.2 ND	0.53	0.1 ND	0.2 ND	0.1 ND	0.2 ND
Toluene	0.06 ND	0.06 ND	1.2	0.05 ND	0.11	0.45	0.42
Trichloroethene	0.3 ND	0.2 ND	0.2 ND	0.1 ND	0.2 ND	0.43	0.2 ND
Vinyl chloride	0.1 ND	0.09 ND	0.1 ND	0.08 ND	0.09 ND	0.06 ND	0.09 ND

DATA SUMMARY Shrader Lab Packages

the two fit that the war tell had take the best to be a fitter that the fitter that the fitter that the fitter that the fitter than the fitter

SAMPLE # PARAMETER	TP-3 COMP J069005 8/31/00	TP-30 COMP J069006 8/31/00	TP-4 COMP J069004 8/31/00	TP-5 COMP J069001 8/30/00	TP-6 COMP J069003 8/31/00
<u> </u>	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2-Dichlorobenzene	0.09 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
1,2-Dichloroethane	0.2 אי	0.2 ND	0.3 ND	0.2 ND	0.3 ND
1,2-Dichloropropane	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
1,4-Dichlorobenzene	0.05 ND	0.08 ND	0.08 ND	0.07 ND	0.09 ND
Acetone	4 ND	57	4 ND	4 ND	5 ND
Benzene	0.03 ND	0.34	0.05 ND	0.04 ND	0.05 ND
Chlorobenzene	0.04 ND	0.05 ND	0.05 ND	0.04 ND	0.05 ND
Ethylbenzene	0.77	2.8	0.1 ND	0.1 ND	0.1 ND
m,p-Xylene	2.3	6.2	0.06 ND	0.05 ND	0.06 ND
Methyl ethyl ketone	2 ND	l ND	2 ND	1 ND	2 ND
Methylene chloride	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
o-Xylene	1.1	2.9	0.07 ND	0.06 ND	0.06 ND
Styrene	0.04 ND	0.05 ND	0.06 ND	0.05 ND	0.06 ND
Tetrachloroethene	0.1 ND	0.67	0.2 ND	0.1 ND	0.2 ND
Toluene	1.6	3.7	0.06 ND	0.05 ND	0.06 ND
Trichloroethene	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
Vinyl chloride	0.06 ND	0.08 ND	0.09 ND	0.08 ND	0.09 ND

DATA SUMMARY Shrader Lab Packages

SAMPLE #	IMW-060 (06'-08')	SMW-04 (10'-12')	SMW-14 (06'-08')	SMW-15 (04'-06')	SMW-16 (0'-02')	SMW-17 (0'-02')	SMW-18 (0'-02')
	J008019 8/8/00	J008006 8/4/00	J008009 8/7/00	J008008 8/7/00	J021001 8/9/00	J021002 8/9/00	J021003 8/9/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2-Dichlorobenzene	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND
1,2-Dichloroethane	4	0.2 ND	0.2 ND	0.2 ND	0.3 ND	0.2 ND	0.3 ND
1,2-Dichloropropane	0.92	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
1,4-Dichlorobenzene	0.2 ND	0.08 ND	0.07 ND	0.08 ND	0.08 ND	0.1 ND	0.06 ND
Acetone	35	2 ND	2 ND	2 ND	2 ND	2 ND	3 ND
Benzene	0.07 ND	0.04 ND	0.04 ND	0.04 ND	0.06 ND	0.04 ND	0.06 ND
Chlorobenzene	0.09 ND	0.04 ND	0.04 ND	0.04 ND	0.04 ND	0.05 ND	0.04 ND
Ethylbenzene	0.2 ND	0.09 ND	0.09 ND	0.1 ND	0.1 ND	0.1 ND	0.36
m,p-Xylene	0.19	0.05 ND	0.04 ND	0.05 ND	0.05 ND	0.05 ND	0.67
Methyl ethyl ketone	2 ND	0.8 ND	2 ND	1 ND	1 ND	0.9 ND	1 ND
Methylene chloride	5.7	30	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
o-Xylene	0.1 ND ·	0.06 ND	0.05 ND	0.06 ND	0.06 ND	0.06 ND	0.52
Styrene	0.09 ND	0.05 ND	0.04 ND	0.05 ND	0.05 ND	0.05 ND	0.04 ND
Tetrachloroethene	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Toluene	0.55	0.05 ND	0.04 ND	0.05 ND	0.05 ND	0.05 ND	0.65
Trichloroethene	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
Vinyl chloride	1.2	0.07 ND	0.06 ND	0.08 ND	0.1 ND	0.07 ND	0.1 ND

Page: 5 of 22

DATA SUMMARY Shrader Lab Packages

I will also be to

SAMPLE #	SMW-19 (0'-02') J021004 8/9/00	SMW-20 (04'-06') J008016 8/7/00	SMW-21 (02'-04') J008012 8/7/00	SMW-22 (04'-06') J008013 8/7/00	SMW-23 (04'-06') J008020 8/8/00	TP-1 COMP J069007 8/31/00	TP-2 COMP J069002 8/30/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2-Dichlorobenzene	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.09 ND	0.1 ND
1,2-Dichloroethane	0.4 ND	0.3 ND	0.3 ND	0.2 ND	0.3 ND	0.2 ND	0.3 ND
1,2-Dichloropropane	0.3 ND	0.2 ND	0.2 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
1,4-Dichlorobenzene	0.09 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.05 ND	0.08 ND
Acetone	3 ND	4 ND	5 ND	4 ND	4 ND	3 ND	4 ND
Benzene	0.08 ND	0.05 ND	0.05 ND	0.04 ND	0.05 ND	0.03 ND	0.8
Chlorobenzene	0.06 ND	0.06 ND	0.06 ND	0.05 ND	0.06 ND	0.04 ND	0.05 ND
Ethylbenzene	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.08 ND	0.1 ND
m,p-Xylene	0.06 ND	0.06 ND	0.28	0.05 ND	0.06 ND	0.22	0.18
Methyl ethyl ketone	2 ND	1 ND	2 ND	1 ND	1 ND	I ND	2 ND
Methylene chloride	0.2 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
o-Xylene	0.08 ND	0.08 ND	0.08 ND	0.06 ND	0.08 ND	0.11	0.07 ND
Styrene	0.06 ND	0.06 ND	0.07 ND	0.05 ND	0.06 ND	0.04 ND	0.06 ND
Tetrachloroethene	0.2 ND	0.2 ND	0.53	0.1 ND	0.2 ND	0.1 ND	0.2 ND
Toluene	0.06 ND	0.06 ND	1.2	0.05 ND	0.11	0.45	0.42
Trichloroethene	0.3 ND	0.2 ND	0.2 ND	0.1 ND	0.2 ND	0.43	0.2 ND
Vinyl chloride	0.1 ND	0.09 ND	0.1 ND	0.08 ND	0.09 ND	0.06 ND	0.09 ND

DATA SUMMARY Shrader Lab Packages

And I to the bull that the bull that the bull that the bull that the

SAMPLE #	TP-3 COMP J069005 8/31/00	TP-30 COMP J069006 8/31/00	TP-4 COMP J069004 8/31/00	TP-5 COMP J069001 8/30/00	TP-6 COMP J069003 8/31/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2-Dichlorobenzene	0.09 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
1,2-Dichloroethane	0.2 ND	0.2 ND	0.3 ND	0.2 ND	0.3 ND
1,2-Dichloropropane	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
1,4-Dichlorobenzene	0.05 ND	0.08 ND	0.08 ND	0.07 ND	0.09 ND
Acetone	4 ND	57	4 ND	4 ND	5 ND
Benzene	0.03 ND	0.34	0.05 ND	0.04 ND	0.05 ND
Chlorobenzene	0.04 ND	0.05 ND	0.05 ND	0.04 ND	0.05 ND
Ethylbenzene	0.77	2.8	0.1 ND	0.1 ND	0.1 ND
m,p-Xylene	2.3	6.2	0.06 ND	0.05 ND	0.06 ND
Methyl ethyl ketone	2 ND	1 ND	2 ND	1 ND	2 ND
Methylene chloride	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
o-Xylene	1.1	2.9	0.07 ND	0.06 ND	0.06 ND
Styrene	0.04 ND	0.05 ND	0.06 ND	0.05 ND	0.06 ND
Tetrachloroethene	0.1 ND	0.67	0.2 ND	0.1 ND	0.2 ND
Toluene	1.6	3.7	0.06 ND	0.05 ND	0.06 ND
Trichloroethene	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.2 ND
Vinyl chloride	0.06 ND	0.08 ND	0.09 ND	0.08 ND	0.09 ND

DATA SUMMARY Shrader Lab Packages

the first term that the term to be the state of the state of

SAMPLE #	DMW-09 (02'-04')	DMW-09 (06'-08')	DMW-09 (10'-12')	DMW-09 (26'-28')	DMW-10 (02'-04')	DMW-10 (08'-10')	DMW-10 (10'-12')
	1997001 7/27/00	1997002 7/27/00	1997003 7/27/00	J007001 8/2/00	J001001 7/31/00	J001002 7/31/00	J001003 7/31/00
PARAMETER	mg/kg						
1,2,4,5-Tetrachlorobenzene	0.1 ND	0.2 ND	0.1 ND				
1,2,4-Trichlorobenzene	0.1 ND	0.2 ND	0.1 ND				
2,4,6-Trichlorophenol	0.1 ND	0.2 ND	0.1 ND				
2,4-Dichlorophenol	0.1 ND	0.2 ND	0.1 ND				
2,4-Dimethylphenol	0.1 ND	0.2 ND	0.1 ND				
2-Chlorophenol	0.1 ND	0.2 ND	0.1 ND				
Acenaphthene	0.1 ND	0.247	0.1 ND				
Aniline	0.3 ND	0.2 ND	0.3 ND	0.1 ND	0.3 ND	0.3 ND	0.3 ND
Benzo(a)pyrene	0.1 ND	0.122	0.1 ND	0.1 ND	0.636	0.812	0.1 ND
bis(2-Ethylhexyl)phthalate	0.1 ND	0.277	0.1 ND	0.1 ND	1.66	12.2	0.1 ND
Carbazole	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.29	0.915	0.1 ND
Di-n-butyl phthalate	0.1 ND	0.I ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND
Dibenzofuran	0.1 ND	0.12	0.1 ND	0.1 ND	0.546	1.19	0.1 ND
Fluoranthene	0.102	0.564	0.1 ND	0.1 ND	2.4	3.17	0.1 ND
Fluorene	0.1 ND	0.185	0.1 ND	0.1 ND	0.214	1.08	0.1 ND
Hexachlorobutadiene	0.1 ND	0.3 ND	0.1 ND				
Hexachloroethane	0.1 ND	0.5 ND	0.1 ND				
Isophorone	0.1 ND	0.2 ND	0.1 ND				
m,p-Cresol	0.1 ND	0.1 ND	0.1 ND	0.4 ND	0.1 ND	0.2 ND	0.1 ND
Naphthalene	0.1 ND	0.547	0.1 ND	0.1 ND	0.797	7.88	0.102
o-Cresol	0.1 ND	0.2 ND	0.1 ND				
Pentachlorophenol	0.3 ND	0.2 ND	0.3 ND				
Phenanthrene	0.1 ND	0.704	0.1 ND	0.1 ND	2.65	4.58	0.1 ND
Phenol	0.1 ND	0.2 ND	0.1 ND				

Page: 8 of 22

DATA SUMMARY Shrader Lab Packages

SAMPLE#	DMW-10 (24'-26')	DMW-11 (04'-06')	DMW-11 (06'-08')	DMW-11 (24'-26')	DMW-110 (04'-06')	DMW-12 (04'-06')	DMW-12 (06'-08')
	J007002 8/2/00	J001006 7/31/00	J001008 7/31/00	J008001 8/3/00	J001007 7/31/00	J002007 8/1/00	J002004 8/1/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4,5-Tetrachlorobenzene	0.1 ND	0.2 ND	0.1 ND	0.08 ND	0.1 ND	0.1 ND	0.1 ND
1,2,4-Trichlorobenzene	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2,4,6-Trichlorophenol	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2,4-Dichlorophenol	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2,4-Dimethylphenol	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2-Chlorophenol	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Acenaphthene	0.1 ND	0.464	6.59	0.1 ND	0.109	0.1 ND	0.1 ND
Aniline	0.1 ND	0.3 ND	0.3 ND	0.1 ND	0.3 ND	0.1 ND	0.1 ND
Benzo(a)pyrene	0.1 ND	2.12	18	0.1 ND	0.297	0.1 ND	0.35
bis(2-Ethylhexyl)phthalate	0.1 ND	0.931	0.5 ND	0.3 ND	0.422	0.1 ND	0.1 ND
Carbazole	0.1 ND	0.456	6.32	0.1 ND	0.169	0.1 ND	0.1 ND
Di-n-butyl phthalate	0.1 ND	0.2 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Dibenzofuran	0.1 ND	0.71	4.56	0.1 ND	0.229	0.1 ND	0.256
Fluoranthene	0.1 ND	5.48	49.7	0.1 ND	1.21	0.1 ND	0.81
Fluorene	0.1 ND	0.982	6.1	0.1 ND	0.328	0.1 ND	0.191
Hexachlorobutadiene	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Hexachloroethane	0.1 ND	0.2 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Isophorone	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
m,p-Cresol	0.4 ND	0.2 ND	0.551	0.3 ND	0.1 ND	0.3 ND	0.4 ND
Naphthalene	0.1 ND	1.52	7.57	0.1 ND	0.906	0.1 ND	0.192
o-Cresol	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Pentachlorophenol	0.2 ND	0.3 ND	0.3 ND	0.2 ND	0.3 ND	0.2 ND	0.3 ND
Phenanthrene	0.1 ND	5.11	44.7	0.1 ND	1.53	0.1 ND	1.28
Phenol	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.134

DATA SUMMARY Shrader Lab Packages

SAMPLE #	DMW-12 (10'-12')	DMW-12 (18'-20')	DMW-12 (28'-30')	DMW-120 (28'-30')	DMW-13 (04'-06')	DMW-13 (06'-08')	DMW-13 (10'-12')
PARAMETER	J002005 8/1/00	J002006 8/1/00	J008004 8/3/00	J008003 8/3/00	J002001 7/31/00	J002002 7/31/00	J002003 7/31/00
<u> </u>	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4,5-Tetrachlorobenzene	0.2 ND	0.1 ND	0.08 ND	0.09 ND	0.1 ND	0.1 ND	0.1 ND
1,2,4-Trichlorobenzene	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2,4,6-Trichlorophenol	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND
2,4-Dichlorophenol	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2,4-Dimethylphenol	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2-Chlorophenol	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Acenaphthene	1.11	0.1 ND	0.1 ND	0.1 ND	0.1 ND	5.74	0.185
Aniline	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Benzo(a)pyrene	3.72	0.1 ND	0.1 ND	0.1 ND	0.1 ND	10.3	0.797
bis(2-Ethylhexyl)phthalate	2 ND	0.1 ND	0.4 ND	0.4 ND	0.6 ND	0.5 ND	0.1 ND
Carbazole	1.21	0.1 ND	0.1 ND	0.1 ND	0.1 ND	4.27	0.28
Di-n-butyl phthalate	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Dibenzofuran	3.65	0.1 ND	0.1 ND	0.1 ND	0.1 ND	35.8	0.968
Fluoranthene	14.3	0.1 ND	0.1 ND	0.1 ND	0.151	67	2.31
Fluorene	3.21	0.1 ND	0.1 ND	0.1 ND	0.1 ND	35.2	1.05
Hexachlorobutadiene	0.2 ND	0.1 ND	0.1 ND	0.2 ND	0.1 ND	38.2	0.1 ND
Hexachloroethane	0.3 ND	0.2 ND	0,2 ND	0.2 ND	0.1 ND	0.3 ND	0.1 ND
Isophorone	8.6	0.1 ND	0.1 ND	2.94	0.1 ND	0.1 ND	0.1 ND
m,p-Cresol	0.5 ND	0.4 ND	0.4 ND	0.4 ND	0.4 ND	0.49	0.4 ND
Naphthalene	2.29	0.1 ND	0.1 ND	0.1 ND	0.1 ND	176	3.14
o-Cresol	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Pentachlorophenol	0.3 ND	0.3 ND	0.2 ND	0.2 ND	0.2 ND	0.3 ND	0.3 ND
Phenanthrene	20.3	0.1 ND	0.1 ND	0.1 ND	0.114	100	3.11
Phenol	0.873	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.37	0.1 ND

Page: 10 of 22

DATA SUMMARY Shrader Lab Packages

SAMPLE#	DMW-13 (26'-28')	IMW-01 (02'-04')	IMW-01 (06'-08')	IMW-05 (02'-04')	IMW-05 (04'-06')	IMW-06 (02'-04')	IMW-06 (06'-08')
	J008002 8/3/00	J008010 8/7/00	J008011 8/7/00	J008022 8/8/00	J008021 8/8/00	J008017 8/8/00	J008018 8/8/00
PARAMETER	mg/kg						
1,2,4,5-Tetrachlorobenzene	0.08 ND	0.08 ND	0.1 ND	0.2 ND	0.6 ND	0.2 ND	0.1 ND
1,2,4-Trichlorobenzene	0.1 ND	0.1 ND	0.2 ND	0.3 ND	0.6 ND	0.2 ND	0.2 ND
2,4,6-Trichlorophenol	0.1 ND	0.1 ND	0.2 ND	0.3 ND	0.9 ND	0.2 ND	0.2 ND
2,4-Dichlorophenol	0.1 ND	0.1 ND	0.2 ND	0.3 ND	0.6 ND	0.2 ND	0.2 ND
2,4-Dimethylphenol	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.5 ND	0.2 ND	0.2 ND
2-Chlorophenol	0.1 ND	0.1 ND	0.2 ND	0.3 ND	1 ND	0.2 ND	0.3 ND
Acenaphthene	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.3 ND	0.2 ND	0.532
Aniline	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.5 ND	0.2 ND	0.2 ND
Benzo(a)pyrene	0.1 ND	0.1 ND	0.222	4.1	2.56	0.2 ND	7.04
bis(2-Ethylhexyl)phthalate	0.3 ND	0.697	0.6 ND	0.7 ND	0.7 ND	0.5 ND	0.5 ND
Carbazole	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	1.57
Di-n-butyl phthalate	0.1 ND	0.1 ND	0.2 ND				
Dibenzofuran	0.1 ND	0,1 ND	0.2 ND	0,343	1.05	0.2 ND	2.44
Fluoranthene	0.1 ND	0.1 ND	0.371	5.52	3.92	0.346	16.3
Fluorene	0.1 ND	0.1 ND	0.2 ND	0.74	1.21	0.2 ND	3.68
Hexachlorobutadiene	0.1 ND	0.1 ND	0.3 ND	0.5 ND	l ND	0.2 ND	0.3 ND
Hexachloroethane	0.1 ND	0.2 ND	0.2 ND	0.7 ND	2 ND	0.3 ND	0.5 ND
Isophorone	0.1 ND	0.1 ND	0.2 ND				
m,p-Cresol	0.3 ND	0.3 ND	0.6 ND	0.7 ND	0.9 ND	0.5 ND	0.5 ND
Naphthalene	0.1 ND	0.1 ND	0.2 ND	0,639	2.41	0.441	6.06
o-Cresol	0.1 ND	0.1 ND	0.2 ND	0.3 ND	0.8 ND	0.2 ND	0.2 ND
Pentachlorophenol	0.2 ND	0.2 ND	0.4 ND	0.5 ND	1 ND	0.3 ND	0.3 ND
Phenanthrene	0.1 ND	0.1 ND	0.323	1.85	3.16	0.694	18.6
Phenol	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.6 ND	0.2 ND	0.2 ND

DATA SUMMARY Shrader Lab Packages

to a distribution of the first term of the first term of

SAMPLE#	IMW-060 (06'-08')	SMW-04 (10'-12')	SMW-14 (06'-08')	SMW-15 (04'-06')	SMW-16 (0'-02')	SMW-17 (0'-02')	SMW-18 (0'-02')
	J008019 8/8/00	J008006 8/4/00	J008009 8/7/00	J008008 8/7/00	J021001 8/9/00	J021002 8/9/00 ⁻	J021003 8/9/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4,5-Tetrachlorobenzene	0.2 ND	0.1 ND	0.08 ND	0.09 ND	0.1 ND	0.1 ND	0.1 ND
1,2,4-Trichlorobenzene	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2,4,6-Trichlorophenol	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2,4-Dichlorophenol	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2,4-Dimethylphenol	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
2-Chlorophenol	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Acenaphthene	0.393	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.159	0.1 ND
Aniline	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Benzo(a)pyrene	2.13	0.1 ND	0.1 ND	0.1 ND	1.41	1.35	0.226
bis(2-Ethylhexyl)phthalate	0.7 ND	0.4 ND	0.4 ND	0.4 ND	0.1 ND	0.1 ND	0.1 ND
Carbazole	0.995	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.114	0.1 ND
Di-n-butyl phthalate	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Dibenzofuran	1.88	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.156	0.1 ND
Fluoranthene	4.64	0.376	0.151	0.1 ND	1.95	2.29	0.333
Fluorene	1.97	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.116	0.1 ND
Hexachlorobutadiene	0.5 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Hexachloroethane	0.6 ND	0.3 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Isophorone	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
m,p-Cresol	0.7 ND	0.4 ND	0.4 ND	0.4 ND	0.3 ND	0.4 ND	0.3 ND
Naphthalene	10	0.223	0.237	0.1 ND	0.1 ND	0.167	0.213
o-Ĉresol	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND
Pentachlorophenol	0.5 ND	0.3 ND	0.2 ND	0.3 ND	0.2 ND	0.2 ND	0.2 ND
Phenanthrene	6.65	0.5	0.21	0.1 ND	0.979	1.21	0.34
Phenol	0.542	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND	0.1 ND

DATA SUMMARY Shrader Lab Packages

to be the first the best of the first the best of the

SAMPLE#	SMW-19 (0'-02')	SMW-20 (04'-06')	SMW-21 (02'-04')	SMW-22 (04'-06')	SMW-23 (04'-06')	TP-1 COMP	TP-2 COMP
	J021004 8/9/00	J008016 8/7/00	J008012 8/7/00	J008013 8/7/00	J008020 8/8/00	J069007 8/31/00	J069002 8/30/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4,5-Tetrachlorobenzene	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.08 ND	0.1 ND	0.2 ND
1,2,4-Trichlorobenzene	0.1 ND	0.1 ND	0.3 ND	0.2 ND	0.2 ND	0.118	0.2 ND
2,4,6-Trichlorophenol	0.1 ND	0.2 ND	0.3 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND
2,4-Dichlorophenol	0.1 ND	0.1 ND	0.3 ND	0.2 ND	0.2 ND	0.1 ND	0.2 ND
2,4-Dimethylphenol	0.1 ND	0.1 ND	0.2 ND	0.2 ND	0.2 ND	0.1 ND	0.2 ND
2-Chlorophenol	0.1 ND	0.1 ND	0.3 ND	0.2 ND	0.2 ND	0.1 ND	0.2 ND
Acenaphthene	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.296
Aniline	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND
Benzo(a)pyrene	0.1 ND	0.665	0.2 ND	3.75	0.896	2.33	1.18
bis(2-Ethylhexyl)phthalate	0.606	612	0.5 ND	0.3 ND	0.3 ND	1.47	0.2 ND
Carbazole	0.1 ND	0.1 ND	0.2 ND	0,1 ND	0.108	0.1 ND	0.883
Di-n-butyl phthalate	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND
Dibenzofuran	0.1 ND	0.1 ND	0.2 ND	0.252	0.1 ND	0.42	1.76
Fluoranthene	0.406	0.781	0.366	1.47	2.33	3.21	6.26
Fluorene	0.1 ND_	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.229	2.06
Hexachlorobutadiene	0.2 ND	0.2 ND	0.5 ND	0.3 ND	0.3 ND	0.1 ND	0.2 ND
Hexachloroethane	0.2 ND	0.3 ND	0.5 ND	0.4 ND	0.3 ND	0.1 ND	0.2 ND
Isophorone	0.1 ND	0.1 ND	0.2 ND	0.44	0.1 ND	0.1 ND	0.2 ND
m,p-Cresol	0.3 ND	0.3 ND	0.5 ND	0.3 ND	0.3 ND	0.4 ND	0.5 ND
Naphthalene	0.323	0.308	0.2 ND	0.853	0.127	0.969	5.78
o-Cresol	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.2 ND
Pentachlorophenol	0.2 ND	0.2 ND	0.4 ND	0.2 ND	0.2 ND	0.2 ND	0.3 ND
Phenanthrene	0.39	0.491	0.268	0.945	1.53	2.36	9.77
Phenol	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.1 ND	0.1 ND	0.618

DATA SUMMARY Shrader Lab Packages

and the first that the first the fir

SAMPLE#	TP-3 COMP	TP-30 COMP	TP-4 COMP	TP-5 COMP	TP-6 COMP
	J069005 8/31/00	J069006 8/31/00	J069004 8/31/00	J069001 8/30/00	J069003 8/31/00
PARAMETER	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4,5-Tetrachlorobenzene	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
1,2,4-Trichlorobenzene	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
2,4,6-Trichlorophenol	0.1 ND	0.1 ND	0.2 NĎ	0.1 ND	0.623
2,4-Dichlorophenol	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
2,4-Dimethylphenol	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
2-Chlorophenol	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
Acenaphthene	0.195	0.1 ND	1.71	0.1 ND	0.3 ND
Aniline	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
Benzo(a)pyrene	1.19	0.366	15.4	3.64	2.42
bis(2-Ethylhexyl)phthalate	2.19	0.829	0.87	0.932	8.65
Carbazole	, 0.762	0.254	7.97	0.642	0.948
Di-n-butyl phthalate	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
Dibenzofuran	1.62	0.516	18.2	1.25	2.19
Fluoranthene	4.16	1.4	39.8	7.88	7.68
Fluorene	1.86	0.568	24	1.11	2.25
Hexachlorobutadiene	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
Hexachloroethane	0.2 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
Isophorone	0.1 ND	0.1 ND	0.2 ND	0.1 ND	0.3 ND
m,p-Cresol	0.612	0.4 ND	1.08	0.4 ND	0.8 ND
Naphthalene	9.13	2.25	41.5	3.74	10.9
o-Cresol	0.1 ND	0.1 ND	0.238	0.1 ND	0.3 ND
Pentachlorophenol	0.2 ND	0.3 ND	0.5 ND	0.3 ND	0.5 ND
Phenanthrene	5.45	1.85	49.4	7.51	10.2
Phenol	0.799	0.296	1.44	0.1 ND	0.3 ND

DATA SUMMARY Shrader Lab Packages

PCBs (mg/kg)

SAMPLE # PARAMETER	DMW-09 1997001	(02'-04') 7/27/00	DMW-09 1997002	` ,	DMW-09 1997003	•	DMW-09 J007001	•	DMW-10 J001001	(02'-04') 7/31/00	DMW-10 J001002	•
Arochlor-1242	0.33	ND	0.33	ND	0.33	ND	0.33	ND	1	1D	0.33	ND
Arochlor-1248	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1254	0.33	ND	0.33	ND	0.33	ND	0.33	ND	2.8	34	2,2	23
Arochlor-1260	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ÑĎ
Total PCBs	0.33	ND	0.33	ND	0.33	ND	0.33	ND	2.8	34	2.2	23

THE RESIDENCE OF THE PARTY OF THE PARTY CAN AND THE PARTY OF THE PARTY

Metals (mg/kg)

Arsenic	11.3	3.6	7.9	9.3	43.3	17.2
Barium	61.3	108	116	65.6	142	262
Cadmium	0.2	0.5	0.13	0.2	1.5	1.5
Chromium	18.4	16.2	30.4	15.6	23.9	35.4
Copper	36.4	19.3	26.8	21.4	129	54
Lead	35.1	38	13.6	9.6	210	220
Mercury	0.79	0.62	0.05 ND	0.05 ND	3.61	9.74
Selenium	1.2	0.3 ND	0.3 ND	1 ND	0.8	0.8
Sodium	1020	2890	2850	696	8490	10100
Zinc	41.6	70.9	93.5	57.5	212	275

Inorganics (mg/kg)

(g) Cyanide, Total	2.76	0.89	0.1 ND	2290 ND	2.91	1.04
Nitrogen, Ammonia	17 ND	50	17 ND	60	17	60

Chloride (mg/kg)	1110	1530	3160	650	3020	1630
pH at 25 deg C	12.5	12.4	8.4	8.2	11.5	12
Sulfate (mg/kg)	19400	2960	1650	2	7730	3510

DATA SUMMARY Shrader Lab Packages

the term of the term to be the second and the term that the term of the term o

PCBs (mg/kg)

SAMPLE # PARAMETER		(10'-12') 7/31/00	DMW-10 J007002	•	DMW-11 J001006		DMW-11 J001008	•	DMW-11 J008001	` ,	DMW-110 J001007	•
Arochlor-1242	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1248	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1254	0.33	ND	0.33	ND	1.	4	0.33	ND	0.33	ND	0.7	15
Arochlor-1260	0.33	ND	0.33	ND	0,33	ND	0.33	ND	0.33	ND	0.33	ND
Total PCBs	0.33	ND	0.33	ND	1.	4	0.33	ND	0.33	ND	0.7	15

Metals (mg/kg)

Arsenic	10.3	7.5	6.6	6.2	6.9	7.9
Barium	110	64.6	136	171	65.6	122
Cadmium	0.29	0.2	0.8	3	0.2	0.6
Chromium	30.2	15.4	31.4	89.2	15.4	19
Copper	19.6	21.2	38.2	116	21.4	32
Lead	16.2	9	158	111	8.2	62.8
Мегсигу	0.21	0.05 ND	5.25	5.77	0.05 ND	2.52
Selenium	0.3 ND	I ND	0.8	1.3	0.2 ND	0.3 ND
Sodium	1630	688	10800	14500	636	9050
Zinc	76	46.6	238	783	46	120

Inorganics (mg/kg)

g) Cyanide, Total	0.206	0.1 ND	1.61	3.16	0.2 ND	0.506
Nitrogen, Ammonia	30	17	17 ND	23	16 ND	17 ND

Chloride (mg/kg)	2550	888	1810	2870	1630	1590
pH at 25 deg C	8.4	7.9	12.1	12	7.94	12.1
Sulfate (mg/kg)	1590	1430	3560	2420	2630	3600

DATA SUMMARY Shrader Lab Packages

the third of the telescent telescent the telescent telesce

PCBs (mg/kg)

SAMPLE# PARAMETER	DMW-12 (04'-06') J002007 8/1/00	DMW-12 (06'-08') J002004 8/1/00	DMW-12 (10'-12') J002005 8/1/00	DMW-12 (18'-20') J002006 8/1/00	DMW-12 (28'-30') J008004 8/3/00	DMW-120 (28'-30') J008003 8/3/00
Arochlor-1242	0.33 ND	0,33 ND				
Arochlor-1248	0.33 ND					
Arochlor-1254	0.33 ND	0.94	5.01	0.33 ND	0.33 ND	0.33 ND
Arochlor-1260	0.33 ND					
Total PCBs	0.33 ND	0.94	5.01	0.33 ND	0.33 ND	0.33 ND

Metals (mg/kg)

			4		•	
Arsenic	1.3	17.3	20	8.9	7.6	6.8
Barium	3.5	138	118	50	69.4	64
Cadmium	0.08	2.6	1.4	0.4	0.2	0.2
Chromium	1.5	31.3	40.4	17.8	16.9	18.1
Copper	3.8	288	151	23.9	22.3	23.8
Lead	3.9	387	805	14.9	10.3	8.1
Mercury	0.15	2.19	0.25	0.1	0.05 ND	0.05 ND
Selenium	0.5 ND	0.7	1.2	1 ND	0.2 ND	0.2 ND
Sodium	655	7520	25800	4890	631	629
Zinc	5.8	298	230	62.7	47.9	52.6

Inorganics (mg/kg)

Cyanide, Total	0.1 ND	2.82	1.72	0.446	0.2 ND	6.1
Nitrogen, Ammonia	17 ND	27	30	50	16 ND	16

y Chloride (mg/kg)	1590	2620	1440	2450	1400	1580
pH at 25 deg C	9.6	10.8	10.9	9.7	8.14	7.8
Sulfate (mg/kg)	2080	3290	2530	1730	1100	1940

DATA SUMMARY Shrader Lab Packages

PCBs (mg/kg)

SAMPLE # PARAMETER	DMW-13 J002001	(04'-06' <u>)</u> 7/31/00	DMW-13 (J002002	•				•	IMW-01 J008010	` '	IMW-01 J008011	
Arochlor-1242	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1248	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1254	0.33	ND	1.2	5	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1260	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Total PCBs	0.33	ND	1.2	5	0.33	ND	0.33	ND	0.33	ND	0.33	ND

Metals (mg/kg)

Arsenic	11	12.1	2.3	6.7	5.5	4.8
Barium	124	180	17.1	67.3	43.8	65.9
Cadmium	0.6	0.6	0.07	0.1	0.2	0.3
Chromium	34.9	24.1	8	15.7	12.5	73.6
Copper	113	70.2	8.1	20.1	16.5	19.2
Lead	161	190	9.8	9.9	28.6	30.1
Mercury	33.7	11.1	0.23	0.06	0.37	0.15
Selenium	0.3 ND	2 ND	0.3 ND	0.2 ND	0.6	0.2 ND
Sodium	1920	7040	2980	707	656	1920
Zinc	114	192	22.9	44.5	54.7	81.7

Inorganics (mg/kg

(g) Cyanide, Total	0.124	0.361	0.899	0.2 ND	0.2	0.3
Nitrogen, Ammonia	37	17 ND	87	16 ND	49	182

y Chloride (mg/kg)	1980	1450	1120	1620	1270	1240
pH at 25 deg C	9.7	11.3	10.8	7 82	8.18	9.01
Sulfate (mg/kg)	2020	4840	1540	2410	1500	1380

DATA SUMMARY Shrader Lab Packages

PCR _s	(mg/kg)
I CD2	(IIIK/KK)

SAMPLE # PARAMETER	IMW-05 (02'-04') J008022 8/8/00	IMW-05 (04'-06') J008021 8/8/00	IMW-06 (02'-04') J008017 8/8/00	IMW-06 (06'-08') J008018 8/8/00	IMW-060 (06'-08') J008019 8/8/00	SMW-04 (10'-12') J008006 8/4/00
Arochlor-1242	0.33 ND	0.33 ND				
Arochlor-1248	3.97	0.895	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Arochlor-1254	0.33 i D	0.33 ND	0.33 ND	6.33 ND	0.33 ND	0.33 ND
Arochlor-1260	0.33 ND	0.33 ND	0.33 ND	1.35	0.33 ND	0.33 ND
Total PCBs	3.97	0.895	0.33 ND	1.35	0.33 ND	0.33 ND.

The transfer to the test that the test that the

Metals (mg/kg)

Arsenic	13.4	24.7	97.8	32.5	19	1.8
Barium	378	128	77.3	154	161	69
Cadmium	12.9	1.8	0.2	14.9	6.1	0.6
Chromium	3350	348	16	69.8	68.3	9
Copper	5790	427	15.2	128	103	11.9
Lead	791	234	18	145	177	18.4
Mercury	22900	3440	2.61	4.46	3.6	1.59
Selenium	82.1	6.2	0.8	0.5	1.1	0.2 ND
Sodium	3770	3570	9060	14500	16700	2000
Zinc	855	256	36.7	546	415	42.1

Inorganics (mg/kg)

g) Cyanide, Total	3.8	4.2	22.8	5.8	5.5	ı
Nitrogen, Ammonia	28	47	16 ND	22	39	37

y Chloride (mg/kg)	1530	1410	1330	1240	1310	1570
pH at 25 deg C	8.2	10.78	12.43	11.64	11.73	9.69
Sulfate (mg/kg)	6960	25000	28300	4440	4570	1240

DATA SUMMARY Shrader Lab Packages

PCBs (mg/kg)

SAMPLE # PARAMETER	SMW-14 (06 J008009 8/	'-08') ['] 7/00	SMW-15 (04'-06 J008008 8/7/0	' '	SMW-17 (0'-02') J021002 8/9/00	SMW-18 (0'-02') J021003 8/9/00	SMW-19 (0'-02') J021004 8/9/00
Arochlor-1242	0.33 NI	D	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Arochlor-1248	0.33 NI	D	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Arochlor-1254	0.33 NI	Ď	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Arochlor-1260	0.33 N	D	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Total PCBs	0.33 NI	D	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND

the transfer that the transfer the transfer that the transfer the transfer that the transfer the transfer the transfer that the transfer the transfer that the transfer that the transfer the transfer that the tr

Metals (mg/kg)

· · · · · · · · · · · · · · · · · · ·	1 10	1 63	2.0 ND	· · · · · · · · · · · · · · · · · · ·		0.5
Arsenic	1.9	6.3	3.8 ND	6	8.8	8.5
Barium	78.4	69.4	89.5	109	70.6	411
Cadmium	0.2	0.2	0.5 ND	0.8	0.4	0.6
Chromium	11.5	15.4	944	295	85.2	178
Copper	8.8	20.5	22.8	55.3	21.4	63.2
Lead	6.9	8.7	17	91.3	68.2	126
Mercury	0.14	0.05 ND	0.05 ND	0.25	0.14	0.77
Selenium	0.5	0.2 ND	3.8 ND	1 ND	1 ND	1 ND
Sodium	4530	3540	1840	1110	757	770
Zinc	19.5	54	63.8	276	105	207

Inorganics (mg/kg)

g) Cyanide, Total	1.1	2.7	0.3	0.5	0.3	0.7
Nitrogen, Ammonia	161	24	16 ND	60	35	30

,						
y Chloride (mg/kg)	1400	1490				
pH at 25 deg C	10.57	9.69	12.54	8.78	8.15	10.91
Sulfate (mg/kg)	2560	1990	2400	4150	3020	4180

DATA SUMMARY Shrader Lab Packages

PCBs (mg/kg)

SAMPLE # PARAMETER	SMW-20 J008016	` ,	SMW-21 J008012	` '	SMW-22 (J008013	•	SMW-23 J008020	•	TP-1 C J069007		TP-2 C J069002	
Arochlor-1242	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1248	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Arochlor-1254	0.33	ND	0.33	ND	0.33	ND	0.33	ND.	7.1	5	2.3	36
Arochlor-1260	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND	0.33	ND
Total PCBs	0.33	ND	0.33	ÑĎ	0.33	ND	0.33	NĎ	7.1	.5	2.3	36

Metals (mg/kg)

Arsenic	5.2	10.4	6.3	8	14.4	27.5
Barium	96.5	146	86.9	99.8	375	88.9
Cadmium	0.4	1.1	0.3	0.3	2.6	1
Chromium	19.1	24	27	26.7	51.7	49.5
Copper	27.6	68.5	52.5	28.1	268	90.4
Lead	75.8	156	265	52.3	564	193
Mercury	4.9	7.29	20.2	6.66	2.95	0.84
Selenium	0.6	0.8	0.3	0.2 ND	1 ND	1 ND
Sodium	2440	1990	3200	1200	4120	15400
Zinc	62.7	254	63.7	80.5	508	257

Inorganics (mg/kg)

g) Cyanide, Total	0.2	0.9	4.1	0.5	1.9	0.6
Nitrogen, Ammonia	35	74	16 ND	102	32	135

y Chloride (mg/kg)	1310	1320	1510	1380		
pH at 25 deg C	8.66	7.39	9.43	8.61	8.71	10.23
Sulfate (mg/kg)	2110	8590	2060	1720	1690	1900

DATA SUMMARY Shrader Lab Packages

PCBs (mg/kg)

SAMPLE # PARAMETER	TP-3 COMP J069005 8/31/00	TP-30 COMP J069006 8/31/00	TP-4 COMP J069004 8/31/00	TP-5 COMP J069001 8/30/00	TP-6 COMP J069003 8/31/00
Arochlor-1242	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Arochlor-1248	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Arochlor-1254	0.364	0.362	1.13	2.76	0.363
Arochlor-1260	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Total PCBs	0.364	0.362	1.13	2.76	0.363

the term that the term of the term that

Metals (mg/kg)

Arsenic	8.6	4	9.2	13.4	12
Barium	111	93.6	124	139	135
Cadmium	0.7	0.7	0.7	0.5	0,4
Chromium	17.4	17.5	31.4	21.6	43.5
Соррег	53.8	40.2	94	37.6	45.8
Lead	195	155	387	125	177
Мегсигу	6.63	18.1	175	10.4	46
Selenium	0.2	0.2	1.3 ND -	1 ND	I ND
Sodium	12500	12800	37400	7110	12400
Zinc	112	76.5	131	97.4	144

Inorganics (mg/kg)

Öyanide, Total	4.5	3	2	4.9	0.9
Nitrogen, Ammonia	83	135	71	67	66

Chloride (mg/kg)				******	
pH at 25 deg C	9.32	9.35	10.23	9.65	11.15
Sulfate (mg/kg)	1410	1600	2290	2170	2630

DATA SUMMARY Shrader Lab Packages

the term to the term that the term that the term that the

SAMPLE #	SB-01 (13.5'-19.5') 1989001 7/26/00	SB-02 (24.5'-25') 1989002 7/26/00	SB-09 (3.5'-8.5') I989003 7/26/00	SB-10 (16'-16.5') 1989004 7/26/00
PARAMETE	mg/kg	mg/kg	mg/kg	mg/kg
1,2,4,5-Tetrachlorobenzene	0.1 ND	0.1 ND	0.1 ND	0.2 ND
1,2,4-Trichlorobenzene	0.1 ND	0.1 ND	0.1 ND	0.2 ND
2,4,6-Trichlorophenol	0.1 ND	0.1 ND	0.1 ND	0.2 ND
2,4-Dichlorophenol	0.1 ND	0.1 ND	0.1 ND	0.2 ND
2,4-Dimethylphenol	0.1 ND	0.1 ND	0.1 ND	0.2 ND
2-Chlorophenol	0.1 ND	0.1 ND	0.1 ND	0.2 ND
Acenaphthene	0.1 ND	0.1 ND	0.141	0.2 ND
Aniline	0.3 ND	0.3 ND	0.3 ND	0.3 ND
Benzo(a)pyrene	0.2 ND	0.334	0.552	0.37
bis(2-Ethylhexyl)phthalate	1.21	0.778	1.85	0.677
Carbazole	0.1 ND	0.212	0.614	0.2 ND
Di-n-butyl phthalate	0.1 ND	0.1 ND	0.1 ND	0.2 ND
Dibenzofuran	0.1 ND	0.192	0.685	0.2 ND
Fluoranthene	0.895	1.31	3.25	0.826
Fluorene	0.19	0.228	0.984	0.2 ND
Hexachlorobutadiene	0.1 ND	0.1 ND	0.1 ND	0.2 ND
Hexachloroethane	0.2 ND	0.2 ND	0.1 ND	0.2 ND
Isophorone	0.1 ND	0.1 ND	0.1 ND	0.2 ND
m,p-Cresol	0.1 ND	0.1 ND	0.1 ND	1.31
Naphthalene	0.544	0.785	2.15	0.233
o-Cresol	0.1 ND	0.1 ND	0.1 ND	0.2 ND
Pentachlorophenol	0.3 ND	0.3 ND	0.3 ND	0.3 ND
Phenanthrene	0.955	1.46	4.08	0.76
Phenol	0.1 ND	0.1 ND	0.1 ND	0.497

DATA SUMMARY Shrader Lab Packages

The Control of the Co

PCBs (mg/kg)

SAMPLE # PARAMETER	SB-01 (13.5'-19.5') 1989001 7/26/00	SB-02 (24.5'-25') 1989002 7/26/00	SB-09 (3.5'-8.5') 1989003 7/26/00	SB-10 (16'-16.5') 1989004 7/26/00
Arochlor-1242	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Arochlor-1248	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Arochlor-1254	1.51	0.952	1.25	0.918
Arochlor-1260	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Total PCBs	1.51	0.952	1.25	0.918

Metals (mg/kg)

Arsenic	9.2	15.3	9.7	8.6
Barium	158	119	125	134
Cadmium	1.1	1.4	0.8	1.9
Chromium	33.6	35.5	47.2	69.1
Copper	27.4	47.8	72.9	53.8
Lead	129	38.8	181	335
Mercury	4.78	2.21	1.91	2.07
Selenium	0.3 ND	. 0.3 ND	0.4 ND	0.9
Sodium	1650	3320	2940	6270
Zinc	472	141	107	138

Inorganics (mg/kg)

Cyanide, Total	0.34	1.24	1.27	7.39
Nitrogen, Ammonia	27		17 ND	77

Chloride (mg/kg)	1640		1700	8280
pH at 25 deg C	11.3	9.28	12.4	12.4
Sulfate (mg/kg)	2340		2920	10700

the transfer that the transfer to the transfer that the transfer that the Table E-3 BASF Riverview, Michigan Concrete Samples PCBs, Mercury Printed: 1-30-01

DATA SUMMARY Shrader Lab Packages

	SAMPLE # PARAMETER	RR-1 BOTTOM J035003 8/14/00 (mg/kg)	RR-1 MIDDLE J035002 8/14/00 (mg/kg)	RR-1 TOP J035001 8/14/00 (mg/kg)	RR-2 BOTTOM J035006 8/14/00 (mg/kg)	RR-2 MIDDLE J035005 8/14/00 (mg/kg)	RR-2 TOP J035004 8/14/00 (mg/kg)
PCBs	Arochlor-1242	0.33 ND	0,33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
	Arochlor-1248	0.33 ND	0.33 ND	0.33 ND	0.33 ND ·	0.33 ND	0.33 ND
	Arochlor-1254	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
	Arochlor-1260	0.33 ND	0.33 ND	0.33 ND	0,33 ND	0.33 ND	0.33 ND
	Total PCBs	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Metals	Mercury	0.05 ND	0.05 ND	0.05 ND	0.05 ND	0.05 ND	0.05 ND

	SAMPLE # PARAMETER	RR-3 BOTTOM J035009 8/14/00 (mg/kg)	RR-3 MIDDLE J035008 8/14/00 (mg/kg)	RR-3 TOP J035007 8/14/00 (mg/kg)	RR-4 BOTTOM J035012 8/14/00 (mg/kg)	RR-4 MIDDLE J035011 8/14/00 (mg/kg)	RR-4 TOP J035010 8/14/00 (mg/kg)
PCBs	Arochior-1242	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
	Arochlor-1248	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
	Arochlor-1254	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
	Arochlor-1260	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
	Total PCBs	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND	0.33 ND
Metals	Mercury	0.21	0.05 ND	0.05 ND	0.2	0.05 ND	0.16

PCBs

SAMPLE # PARAMETER	RR-5 BOTTOM J035015 8/14/00 (mg/kg)	RR-5 MIDDLE J035014 8/14/00 (mg/kg)	RR-5 TOP J035013 8/14/00 (mg/kg)
Arochlor-1242	0.33 ND	0.33 ND	0.33 ND
Arochlor-1248	0.33 ND	0.33 ND	0.33 ND
Arochlor-1254	0.33 ND	0.33 ND	0.33 ND
Arochlor-1260	0.33 ND	0.33 ND	0.33 ND
Total PCBs	0.33 ND	0.33 ND	0.33 ND

Metals

ì	Mercury	0.3	0.1	0.05 ND

DATA SUMMARY Shrader Lab Packages

SAMPLE#	BMW-1 J062003	DMW-01 J030009	DMW-02 J011016	DMW-03 J030019	DMW-04 J030014	DMW-05 J011019	DMW-06 J011018	DMW-09 J062005
PARAMETER	8/25/00 ug/L	8/11/00 ug/L	8/9/00 ug/L	8/15/00 ug/L		8/9/00 ug/L	8/9/00 ug/L	8/28/00 ug/L
1,2-Dichlorobenzene	2 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND
1,2-Dichloroethane	4 ND	1 ND	1 ND	1 ND	1 ND	l ND	19	1 ND
1,2-Dichloropropane	3 ND	1 ND	1 ND	1 ND	1 ND	1 ND	l ND	1 ND
1,4-Dichlorobenzene	2 ND	1 ND	1 ND	1 ND	l ND	1 ND	l ND	1 ND
Acetone	90 ND	5 ND	7 ND	7 ND	7 ND	10 ND	7 ND	10 ND
Benzene	I ND	1 ND	1 ND	1 ND	1 ND	l ND	1.7	1 ND
Chlorobenzene	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	l ND	1 ND
Ethylbenzene	2 ND	i ND	1 ND					
m,p-Xylene	l ND	1 ND	1 ND	1 ND	1 ND	i ND	1.7	1 ND
Methyl ethyl ketone	30 ND	3 ND	6 ND	3 ND	4 ND	5 ND	5 ND	6 ND
Methylene chloride	5 ND	5 ND	5 ND	5 ND	5 ND	5 ND	5 ND	5 ND
o-Xylene	l ND	1 ND	1 ND	1 ND	I ND	1 ND	1 ND	1 ND
Styrene	l ND	1 ND	1 ND	1 ND	1 ND	1 ND	I ND	1 ND
Tetrachloroethene	3 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Toluene	I ND	l ND	1 ND	1 ND	1 ND	1 ND	2.8	1 ND
Trichloroethene	3 ND	I ND	I ND	1 ND	I ND	I ND	I ND	1 ND
Vinyl chloride	2 ND	2 ND	2 ND	2 ND	2 ND	2 ND	24	2 ND

DATA SUMMARY Shrader Lab Packages

SAMPLE#	DMW-090	DMW-10	DMW-11	DMW-12	DMW-13	IMW-01	IMW-05	IMW-06
	J062006	J053019	J062001	' J062008	J062002	J042011	J042001	J042008
PARAMETER	8/28/00 ug/L	8/23/00 ug/L	8/24/00 ug/L	8/29/00 ug/L	8/24/00 ug/I	8/18/00 ug/L	8/16/00 ug/L	8/17/00 ug/L
1,2-Dichlorobenzene	1 ND	I ND	l ND	1 ND	1 ND .	1 ND	3 ND	3 ND
1,2-Dichloroethane	I ND	l ND	1 ND	1 ND	2 ND	22	3 ND	47
1,2-Dichloropropane	l ND	1 ND	1 ND	1 ND	I ND	8.4	16	20
1,4-Dichlorobenzene	I ND	1 ND	2 ND	2 ND				
Acetone	10 ND	10 ND	20 ND	20 ND	30 ND	10 ND	12000	1800
Benzene	1 ND	l ND	1 ND	1 ND	l ND	l ND	17	7.7
Chlorobenzene	I ND	1 ND	1 ND	1 ND	I ND	1 ND	1 ND	1 ND
Ethylbenzene	l ND	I ND	l ND	1 ND	I ND	1 ND	2 ND	2 ND
m,p-Xylene	1 ND	4.4	1 ND					
Methyl ethyl ketone	6 ND	5 ND	6 ND	' 7 ND	10 ND	3 ND	10 ND	160
Methylene chloride	5 ND	1400	100					
o-Xylene	l ND	1 ND	1 ND	1 ND	1 ND	i ND	5.7	1 ND
Styrene	1 ND	1 ND	l ND	i ND	1 ND	1 ND	1 ND	1 ND
Tetrachloroethene	1 ND	1 ND	1 ND	I ND	1 ND	1 ND	3 ND	3 ND
Toluene	1 ND	1 ND	l ND	1 ND	1 ND	i ND	9.5	13
Trichloroethene	1 ND	2 ND	2 ND					
Vinyl chloride	2 ND	16						

a tradition to the body to the day of

DATA SUMMARY Shrader Lab Packages

I have the state of the control of t

SAMPLE #	IMW-09	IMW-10	IMW-11	IMW-110	IMW-12	IMW-13	MW-A	MW-B
PARAMETER	J042010 8/18/00 ug/L	J042005 8/17/00 ug/L	J053002 8/22/00 ug/L	J053003 8/22/00 ug/L	J053001 8/22/00 ug/L	J053007 8/22/00 ug/L	J030013 8/11/00 ug/L	J030004 8/10/00 ug/L
1,2-Dichlorobenzene	3 ND	2,	1 ND	2 ND	2 ND	2 ND	5.4	20 ND
1,2-Dichloroethane	3 ND	43	3 ND	3 ND	3 ND	7 ND	2. ND	30 ND
1,2-Dichloropropane	5.4	39	2 ND	2 ND	2 ND	22	13	20 ND
1,4-Dichlorobenzene	2 ND	2 ND	l ND	l ND	1 ND	1 ND	l ND	10 ND
Acetone	1100	2300	930	1100	730	1500	760	12000
Benzene	97	40	5.3	4.4	14	150	120	5 ND
Chlorobenzene	1 ND	17	7 ND					
Ethylbenzene	2 ND	2 ND	3.9	4.5	1 ND	10	2	20 ND
m,p-Xylene	6.1	16	5.3	5.7	3.4	28	6.5	7 ND
Methyl ethyl ketone	20 ND	200	20 ND	20 ND	20 ND	20 ND	7 ND	100 ND
Methylene chloride	5 ND	400	90	89	87	72	28	6400
o-Xylene	5.2	9.3	4	4.5	3.2	21	6.6	9 ND
Styrene	1 ND	l ND	1 ND	7 ND				
Tetrachloroethene	2 ND	4.8	2 ND	2 ND	2 ND	2 ND	l ND	20 ND
Toluene	62	110	9.8	10	21	130	40	15
Trichloroethene	2 ND	l ND	20 ND					
Vinyl chloride	5	70	27	27	2 ND	2 ND	2 ND	10 ND

DATA SUMMARY Shrader Lab Packages

had to a fact that that the total that that the

SAMPLE #	MW-C J030005	MW-D J011012	MW-D0 J011013	MW-E J011017	MW-G J011007	MW-H J030020	MW-I J030021	MW-J J042003
PARAMETER	8/10/00 ug/L	8/8/00 ug/L	8/8/00 ug/L	8/9/00 ug/L	8/7/00 ug/L	8/15/00 ug/L	8/15/00 ug/L	8/16/00 ug/L
1,2-Dichlorobenzene	1 ND	6.6	8.6	1 ND	1 ND	2 ND	2 ND	3 ND
1,2-Dichloroethane	2 ND	120	130	27	1 ND	3 ND	2 ND	3 ND
1,2-Dichloropropane	1 ND	. 12	13	2.3	1 ND	2 ND	1 ND	2 ND
1,4-Dichlorobenzene	1 ND	1 ND	1 ND	I ND	1 ND	2 ND	1 ND	2 ND
Acetone	1600	2300	2500	370	20 ND	20 ND	6000	2600
Benzene	2.8	26	28	5.2	1 ND	l ND	1 ND	3.9
Chlorobenzene	1 ND	1 ND	1 ND	1 ND	1 ND	1 ND	l ND	1 ND
Ethylbenzene	1 ND	4.1	5.4	1 ND	1 ND	I ND	1 ND	2 ND
m,p-Xylene	1 ND	11	14	2	1 ND	l ND	1 ND	1 ND
Methyl ethyl ketone	7 ND	90	89	7 ND	4 ND	10 ND	8 ND	10 ND
Methylene chloride	360	320	330	72	5 ND	62	5 ND	5 ND
o-Xylene	1 ND	7.2	8	1.1	1 ND	1 ND	_ 1 ND	1 ND
Styrene	1 ND	1 ND	l ND	I ND	i ND	1 ND	1 ND	1 ND
Tetrachloroethene	1 ND	2.3	2.4	1.8	1 ND_	2 ND	2 ND	3 ND
Toluene	1 ND	130	130	9.1	1 ND	1 ND	1 ND	4.9
Trichloroethene	I ND	2 ND	2 ND	<u>i</u>	1 ND	2 ND	1 ND	2 ND
Vinyl chloride	2 ND	46	55	9.9	2 ND	2 ND	2 ND	2 ND

DATA SUMMARY Shrader Lab Packages

AND LED CAN CAR CAN LAND

SAMPLE #	MW-K	PZ-1	PZ-2	PZ-3	PZ-4	PZ-5	PZ-6	SB-01
PARAMETER	J030015	J030006	J030011	J030012	J030002	J030003	J030001	J011011
<u></u>	8/14/00 ug/L	8/10/00 ug/L	8/11/00 ug/L	8/11/00 ug/L	8/10/00 ug/L	8/10/00 ug/L	8/10/00 ug/L	8/8/00 ug/L
1,2-Dichlorobenzene	10 ND	3 ND	3 ND	1 ND	20 ND	3 ND	4 ND	2 ND
1,2-Dichloroethane	20 ND	3 ND	3 ND	2 ND	30 ND	5 ND	5 ND	3 ND
1,2-Dichloropropane	9 ND	2 ND	2 ND	1 ND	20 ND	3 ND	22	2 ND
1,4-Dichlorobenzene	9 ND	2 ND	2 ND	1 ND	10 ND	2 ND	2 ND	1 ND
Acetone	100 ND	20 ND	590	170	400 ND	60 ND	1100	30 ND
Benzene	590	48	93	58	290	190	47	3.2
Chlorobenzene	4 ND	1 ND	1 ND	1 ND	16	Î ND	43	1 ND
Ethylbenzene	9 ND	2 ND	2 ND	1 ND	19	2 ND	3 ND	2 ND
m,p-Xylene	16	1 ND	9 .	1.9	41 .	5.8	4.8	1 ND
Methyl ethyl ketone	70 ND	200	10 ND	7 ND	200 ND	30 ND	310	30 ND
Methylene chloride	140	5 ND	66	44	610	91	300	5 ND
o-Xylene	13	l ND	6	1.5	31	3.7	6.9	1 ND
Styrene	4 ND	1 ND	1 ND	1 ND	6 ND	1 ND	1 ND	1 ND
Tetrachloroethene	10 ND	2 ND	2 ND	1 ND	34	3 ND	3 ND	2 ND
Toluene	380	15	86	29	240	44	11	1 ND
Trichloroethene	10 ND	2 ND	2 ND	1 ND	20 ND	3 ND	3 ND	2 ND
Vinyl chloride	6 ND	5.3	2 ND	2 ND	9 ND	2 ND	2 ND	2 ND

Page: 5 of 31

DATA SUMMARY Shrader Lab Packages

the first teacher that the first search to be taken to be

SAMPLE #	SB-02	SB-03	SMW-01	SMW-02	SMW-03	SMW-04	SMW-04-99	SMW-040
	J011009	J011015	J030018	J011010	J030010	J053017	J011003	J053016
PARAMETER	8/8/00 ug/L	8/9/00 ug/L	8/15/00 ug/L	8/8/00 ug/L	8/14/00 ug/L	8/23/00 ug/L	8/4/00 ug/L	8/23/00 ug/L
1,2-Dichlorobenzene	1 ND	2 ND	3 ND	2 ND	1 ND	20 ND	1 ND	30 ND
1,2-Dichloroethane	l ND	4 ND	3 ND	3 ND	1 ND	30 ND	1 ND	40 ND
1,2-Dichloropropane	1 ND	2 ND	5.4	2 ND	1 ND	20 ND	1 ND	20 ND
1,4-Dichlorobenzene	1 ND	1 ND	2 ND	1 ND	1 ND	10 ND	I ND	10 ND
Acetone	7 ND	450	350	20 ND	6 ND	2000	20 ND	600 ND
Benzene	l ND	1 ND	l ND	I ND	1 ND	140	1 ND	120
Chlorobenzene	1 ND	1 ND	1 ND	1 ND	1 ND	19	1 ND	10 ND
Ethylbenzene	1 ND	2 ND	2 ND	1 ND	1 ND	10 ND	l ND	20 ND
m,p-Xylene	1 ND	1 ND	1 ND	1 ND	1 ND	7 ND	1 ND	20 ND
Methyl ethyl ketone	4 ND	20 ND	10 ND	10 ND	3 ND	100 ND	10 ND	300 ND
Methylene chloride	5 ND	5 ND	69	5 ND	5 ND	11000	5 ND	9600
o-Xylene	l ND	1 ND	1 ND	1 ND	1 ND	8 ND	1 ND	8 ND
Styrene	1 ND	1 ND	1 ND	1 ND	1 ND	7 ND	1 ND	7 ND
Tetrachloroethene	1 ND	2 ND	2 ND	2 ND	1 ND	110	1 ND	20 ND
Toluene	1 ND	I ND	1 ND	l ND	1 ND	62	1 ND	10 ND
Trichloroethene	1 ND	2 ND	2 ND	2 ND	1 ND	220	l ND	180
Vinyl chloride	2 ND	2 ND	2 ND	2 ND	2 ND	10 ND	2 ND	10 ND

DATA SUMMARY Shrader Lab Packages

SAMPLE #	SMW-05	SMW-05-99	SMW-06	SMW-06-99	SMW-07	SMW-08	SMW-09	SMW-10
	J042002	J011004	J042007	J011005	J011002	J011001	J042009	J042006
PARAMETER	8/16/00 ug/L	8/7/00 ug/L	8/17/00 ug/L	8/7/00 ug/L	8/4/00 ug/L	8/4/00 ug/L	8/18/00 ug/L	8/17/00 ug/L
1,2-Dichlorobenzene	3 ND	1 ND	3 ND	2 ND	1 ND	1 ND	4 ND	28
1,2-Dichloroethane	4 ND	1 ND	25	3 ND	I ND	1 ND	5 ND	35
1,2-Dichloropropane	21	1 ND .	14	2 ND	1 ND	1 ND	10	34
1,4-Dichlorobenzene	2 ND	1 ND	2 ND	1 ND	1 ND	1 ND	2 ND	2 ND
Acetone	11000	20 ND	2200	20 ND	20 ND	87	660	2300
Benzene	18	l ND	3.8	1 ND	1 ND	1.2	140	53
Chlorobenzene	1 ND	1 ND	l ND	1 ND	1 ND	1 ND	1 ND	1 ND
Ethylbenzene	2 ND	1 ND	2 ND	2 ND	1 ND	1 ND	2 ND	2 ND
m,p-Xylene	7.5	1 ND	l ND	1 ND	1 ND	1 ND	5.9	21
Methyl ethyl ketone	10 ND	6 ND	140	10 ND	10 ND	9 ND	20 ND	190
Methylene chloride	990	5 ND	62	5 ND	5 ND	5 ND	5 ND	350
o-Xylene	7.9	1 ND	I NĎ	1 ND	1 ND	1 ND	8	. 11
Styrene	1 NĎ	l ND	l ND	1 ND	1 ND	1 ND	I ND	5.8
Tetrachloroethene	3 ND	1 ND	3 ND	2 ND	I ND	1 ND	3 ND	6.5
Toluene	13	1 ND	3.2	1 ND	1 ND	1 ND	56	110
Trichloroethene	2 ND	1 ND	2 ND	2 ND	1 ND	1 ND	6.7	2 ND
Vinyl chloride	2 ND	2 ND	5.2	2 ND	2 ND	2 ND	2.8	66

DATA SUMMARY Shrader Lab Packages

SAMPLE #	SMW-11	SMW-12	SMW-13	SMW-14	SMW-15	SMW-16	SMW-17	SMW-18
PARAMETER	J053004 8/22/00 ug/L	J042021 8/21/00 ug/L	J053018 8/23/00 ug/L	J042019 8/21/00 ug/L	J042020 8/21/00 ug/L	J053009 8/22/00 ug/L	J053008 8/22/00 ug/L	J042013 8/21/00 ug/L
1,2-Dichlorobenzene	2 ND	2 ND	20 ND	1 ND	1 ND	1 ND	1 ND	1 ND
1,2-Dichloroethane	3 ND	3 ND	40 ND	6	1 ND	I NĎ	1 ND	1 ND
1,2-Dichloropropane	2 ND	2 ND	20 ND	16	1 ND	1 ND	l ND	1 ND
1,4-Dichlorobenzene	1 ND	1 ND	10 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Acetone	890	940	300 ND	160	9 ND	10 ND	9 ND	5 ND
Benzene	2.8	l ND	7 ND	17	1 ND	1 ND	1.3	1 ND
Chlorobenzene	I ND	l ND	8 ND	1 ND				
Ethylbenzene	1 ND	2 ND	20 ND	1 ND	1 ND	1 ND	1.1	1 ND
m,p-Xylene	1 ND	1 ND	9 ND	2.4	1 ND	1 ND	2.5	1 ND
Methyl ethyl ketone	10 ND	50 ND	100 ND	4 ND	5 ND	7 ND	3 ND	3 ND
Methylene chloride	45	52	20 ND	14	5 ND	5 ND	11	5 ND
o-Xylene	1 ND	1 ND	10 ND	1.2	l ND	1 ND	1.5	1 ND
Styrene	1 ND	1 ND	8 ND	l ND	1 ND	1 ND	1 ND	1 ND
Tetrachloroethene	2 ND	2 ND	20 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Toluene	3.3	1 ND	18	5.3	1 ND	1 ND	1.2	1 ND
Trichloroethene	2 ND	2 ND	20 ND	1 ND	1 ND	1 ND	1 ND	1 ND
Vinyl chloride	2 ND	2 ND	10 ND	2 ND	2 ND	2 ND	2 ND	2 ND

DATA SUMMARY Shrader Lab Packages

SAMPLE#	SMW-19	SMW-190	SMW-20	SMW-21	SMW-22	SMW-23	SMW-230	SMW-24
	J042014	J042015	J042016	J042017	J042018	J053005	J053006	J053014
PARAMETER	8/21/00 ug/L	8/22/00 ug/L	8/22/00 ug/L	8/23/00 ug/L				
1,2-Dichlorobenzene	I ND	1 ND	30 ND	1 ND	3 ND	1 ND	. I ND	1.7
1,2-Dichloroethane	1 ND	1 ND	320	1 ND	4 ND	1 ND	1 ND	13
1,2-Dichloropropane	I ND	1 ND	20 ND	1 ND	5.5	1 ND	l ND	2.2
1,4-Dichlorobenzene	1 ND	1 ND	20 ND	1 ND	2 ND	1 ND	1 ND	4.2
Acetone	5 ND	8 ND	200 ND	6 ND	4000	10 ND	20 ND	20 ND
Benzene	1 ND	1 ND	2500	1 ND	3.3	1 ND	1 ND	23
Chlorobenzene	1 ND	1 ND	430	1 ND				
Ethylbenzene	1 ND	1 ND	190	1 ND	2 ND	1 ND	1 ND	2
m,p-Xylene	1 ND	1 ND	500	1 ND	1 ND	1 ND	1 ND	2
Methyl ethyl ketone	3 ND	4 ND	100 ND	3 ND	20 ND	7 ND	6 ND	10 ND
Methylene chloride	5 ND	5 ND	1800	5 ND	5 ND	32	29	5 ND
o-Xylene	1 ND	1 ND	300	1 ND	I ND	l ND	1 ND	1.8
Styrene	1 ND	1 ND	250	1 ND	1 ND	1 ND	i ND	1 ND
Tetrachloroethene	1 ND	1 ND	20 ND	I ND	2 ND	1 ND	1 ND	1 ND
Toluene	1 ND	1 ND	1500	1 ND	4.7	1 ND	1 ND	4.1
Trichloroethene	1 ND	I ND	20 ND	1 ND	2 ND	1 ND	1 ND	1 ND
Vinyl chloride	2 ND	2 ND	10 ND	2 ND	2 ND	2 ND	2 ND	2 ND

DATA SUMMARY Shrader Lab Packages URS

Printed: 1-30-01

SAMPLE # PARAMETER	SMW-25 J053015 8/23/00 ug/L	SMW-26 J053011 8/23/00 ug/L	SMW-260 J053012 8/23/00 ug/L	SMW-27 J053013 8/23/00 ug/L		
1,2-Dichlorobenzene	I ND	I ND	I ND	5.1		
1,2-Dichloroethane	<u> </u>				36	55
1,2-Dichloropropane	1 ND	17	22	11		
1,4-Dichlorobenzene	1 ND	1 ND	1 ND	1 ND		
Acetone	20 ND	220	2000 ND	1300		
Benzene	34	20	27	38		
Chlorobenzene	1 ND	·1 ND	1 ND	1 ND		
Ethylbenzene	6.1	7.4	33	3 ND		
m,p-Xylene	11	17	32	13		
Methyl ethyl ketone	9 ND	4 ND	20 ND	20 ND		
Methylene chloride	5 ND	130	140	460		
o-Xylene	7.8	11	27	18		
Styrene	1 ND	2.1	1 ND	1 ND		
Tetrachloroethene	l ND	1.8	1 ND	2 ND		
Toluene	8.1	31	46	58		
Trichloroethene	1 ND	1 ND 1 ND 1 ND		65		
Vinyl chloride	3.8	6.1	9.6	17		

DATA SUMMARY Shrader Lab Packages

SAMPLE#	BMW-1	DMW-01	DMW-02	DMW-03	DMW-04	DMW-05	DMW-06	DMW-09
	J062003	J030009	J011016	J030019	J030014	J011019	J011018	J062005
PARAMETER	8/25/00 ug/L	8/11/00 ug/L	8/9/00 ug/L	8/15/00 ug/L	8/14/00 ug/L	8/9/00 ug/L	8/9/00 ug/L	8/28/00 ug/L
1,2,4,5-Tetrachlorobenzene	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
1,2,4-Trichlorobenzene	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
2,4,6-Trichlorophenol	_ 2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
2,4-Dichlorophenol	2 ND	2 ב 2	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
2,4-Dimethylphenol	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
2-Chlorophenol	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
Acenaphthene	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
Aniline	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
Benzo(a)pyrene	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
bis(2-Ethylhexyl)phthalate	2 ND	2 ND	4 ND	246	10.7	868	204	2 ND
Carbazole	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	10.8	2 ND
Di-n-butyl phthalate	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
Dibenzofuran	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	5.77	2 ND
Fluoranthene	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
Fluorene	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	5.51	2 ND
Hexachlorobutadiene	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
Hexachloroethane	2 ND	2 ND	4 ND	5 ND	2 ND	4 ND	4 ND	2 ND
Isophorone	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
m,p-Cresol	6 ND	6 ND	10 ND	10 ND	6 ND	10 ND	10 ND	6 ND
Naphthalene	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	279	2 ND
o-Cresol	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	4 ND	2 ND
Pentachlorophenol	4 ND	4 ND	8 ND	8 ND	4 ND	8 ND	8 ND	4 ND
Phenanthrene	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	5.62	2 ND
Phenol	2 ND	2 ND	4 ND	4 ND	2 ND	4 ND	9.82	2 ND

DATA SUMMARY Shrader Lab Packages

Control of the Contro

SAMPLE#	DMW-090	DMW-10	DMW-11	DMW-12	DMW-13	IMW-01	IMW-010	IMW-05
DAD AMERICA	J062006	J053019	J062001	J062008	J062002	J042011	J042005	J042001
PARAMETER	8/28/00 ug/L	8/23/00 ug/L	8/24/00 ug/L	8/29/00 ug/L	8/24/00 ug/L	8/18/00 ug/L	8/17/00 ug/L	8/16/00 ug/L
1,2,4,5-Tetrachlorobenzene	2 ND	4 ND	7 ND					
1,2,4-Trichlorobenzene	2 ND	4 ND	4 ND					
2,4,6-Trichlorophenol	2 ND	8.31	55.3					
2,4-Dichlorophenol	2 ND	6.84	50.8					
2,4-Dimethylphenol	2 ND	228	4 ND					
2-Chlorophenol	2 ND	4 ND	25.4					
Acenaphthene	2 ND	12.8	4 ND					
Aniline	2 ND	4 ND	4 ND					
Benzo(a)pyrene	2 ND	18.9	38.8					
bis(2-Ethylhexyl)phthalate	2 ND	2 ND	3.98	2 ND	2 ND	42	527	159
Carbazole	2 ND	76.7	43.1					
Di-n-butyl phthalate	2 ND	4 ND	4 ND					
Dibenzofuran	2 ND	56.4	27.8					
Fluoranthene	2 ND	84.3	88.4					
Fluorene	2 ND	51.5	40.6					
Hexachlorobutadiene	2 ND	4 ND	6 ND					
Hexachloroethane	2 ND	3 ND	4 ND	9 ND				
Isophorone	2 ND	4.5	4 ND					
m,p-Cresol	6 ND	895	416					
Naphthalene	2 ND	2 ND	2 ND	2 ND_	2 ND	2 ND	525	142
o-Cresol	2 ND	259	59.1					
Pentachlorophenol	4 ND	50.8	226					
Phenanthrene	2 ND	186	125					
Phenol	2 ND	980	467					

DATA SUMMARY Shrader Lab Packages

to the term that the term and the term that the term the

SAMPLE #	IMW-06	IMW-09	IMW-11	IMW-110	IMW-12	IMW-13	MW-A	MW-B
PARAMETER	J042008	J042010	J053002	J053003	J053001	J053007	J030013	J030004
PARAMETER	8/17/00 ug/L	8/18/00 ug/L	8/22/00 ug/L	8/22/00 ug/L	8/22/00 ug/L	8/22/00 ug/L	8/11/00 ug/L	8/10/00 ug/L
1,2,4,5-Tetrachlorobenzene	4 ND	2 ND	4 ND	4 ND	2 ND	4 ND	2 ND	10 ND
1,2,4-Trichlorobenzene	4 ND	2 ND	4 ND	4 ND	2 ND	4 ND	2 ND	7 ND
2,4,6-Trichlorophenol	6 ND	26.4	4 ND	4 ND	3.31	13.7	2 ND	63.2
2,4-Dichlorophenol	4 ND	2 ND	4 ND	4 ND	2 ND	34.1	2 ND	44.8
2,4-Dimethylphenol	800	2 ND	123	173	2 ND	16.8	2 ND	82
2-Chlorophenol	4 ND	2 ND	4 ND	4 ND	2 ND	12.6	2 ND	21.4
Acenaphthene	20.3	2 ND	4 ND	4 ND	2 ND	6.38	2 ND	23.8
Aniline	4 ND	2 ND	4 ND	4 ND	2 ND	4 ND	2.31	5 ND
Benzo(a)pyrene	40.6	2 ND	5.87	7.42	2 ND	17.1	2 ND	94.6
bis(2-Ethylhexyl)phthalate	267	2 ND	4 ND	4 ND	94.5	498	30.8	159
Carbazole	173	2 ND	4 ND	4 ND	2 ND	25.3	2 ND	102
Di-n-butyl phthalate	4 ND	2 ND	4 ND	4 ND	2 ND	4 ND	2 ND	4 ND
Dibenzofuran	90	2 ND	4 ND	4 ND	2 ND	26.5	2 ND	67.4
Fluoranthene	235	2 ND	9.7	10.9	2.4	68.7	2 ND	230
Fluorene	137	2 ND	4 ND	4 ND	2 ND	34.9	2 ND	101
Hexachlorobutadiene	6 ND	2 ND	4 ND	4 ND	2 ND	4 ND	2 ND	10 ND
Hexachloroethane	7 ND	2 ND	4 ND	4 ND	2 ND	4 ND	3 ND	20 ND
Isophorone	4 ND	2 ND	13	18.8	2 ND	4 ND	2 ND	6 ND
m,p-Cresol	2330	12	326	315	31.3	419	36	609
Naphthalene	802	14.3	4.71	5.41	3.69	248	17.3	451
o-Cresol	681	2 ND	81.8	75.2	3.84	45.7	14	121
Pentachlorophenol	267	4 ND	41.8	42.8	10.2	38.8	23.2	259
Phenanthrene	430	2 ND	8.8	9.92	6.03	126	2 ND	352
Phenol	2500	20.2	216	230	179	611	30.5	437

Page: 13 of 31

DATA SUMMARY Shrader Lab Packages

CONTRACTOR OF CONTRACTOR CONTRACT

SAMPLE #	MW-C	MW-D	MW-D0	MW-E	MW-G	MW-H	MW-I	MW-J
PARAMETER	J030005	J011012	J011013	J011017	J011007	J030020	J030021	J042003
	8/10/00 ug/L	8/8/00 ug/L	8/8/00 ug/L	8/9/00 ug/L	8/7/00 ug/L	8/15/00 ug/L	8/15/00 ug/L	8/16/00 ug/L
1,2,4,5-Tetrachlorobenzene	2 ND	4 ND	4 ND	4 ND	2 ND	2 ND	. 2 ND	4 ND
1,2,4-Trichlorobenzene	2 ND	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND	4 ND
2,4,6-Trichlorophenol	5.45	4 ND	4 ND	4 ND	2 ND	2 ND	8.21	4 ND
2,4-Dichlorophenol	2 ND	4 ND	4 ND	4 ND	2 ND /	2 ND	2.13	4.69
2,4-Dimethylphenol	20.5	184	243	35.9	2 ND	2 ND	2 ND	11.2
2-Chlorophenol	2.58	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND	4 ND
Acenaphthene	2 ND	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND	4 ND
Aniline	2 ND	35.9	33.4	7.02	2 ND	2 ND	2 ND	4 ND
Benzo(a)pyrene	2 ND	5.17	8.18	4 ND	2 ND	2 ND	2 ND	4 ND
bis(2-Ethylhexyl)phthalate	2 ND	189	164	4.74	2 ND	2 ND	124	54
Carbazole	2.99	27.7	31.1	5.04	2 ND	2 ND	2 ND	5.43
Di-n-butyl phthalate	2 ND	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND	4 ND
Dibenzofuran	2 ND	14.5	22.7	4 ND	2 ND	2 ND	2 ND	4 ND
Fluoranthene	2 ND	39.1	59.3	8.67	2 ND	2 ND	7	4.96
Fluorene	2 ND	15.8	22	4 ND	2 ND	2 ND	2.09	4.27
Hexachlorobutadiene	2 ND	4 ND	4 ND	4 ND	2 ND	3 ND	2 ND	4 ND
Hexachloroethane	2 ND	4 ND	4 ND	4 ND	2 ND	4 ND	2 ND	4 ND
Isophorone	2 ND	4 ND	4 ND	4 ND	2 ND	2 ND	2	4 ND
m,p-Cresol	55.4	777	854	158	6 ND	6 ND	6 ND	584
Naphthalene	16.5	194	223	25	2 ND	2 ND	2 ND	89
o-Cresol	17.4	233	267	49.2	2 ND	2 ND	2 ND	35.1
Pentachlorophenol	24.1	147	129	35.1	4 ND	4 ND	7.75	8 ND
Phenanthrene	3.35	60.3	93.1	11.8	2 ND	2 ND	5.67	13.2
Phenol	25.5	731	770	147	2 ND	2 ND	2 ND	69.4

DATA SUMMARY Shrader Lab Packages

From the transfer of the trans

SAMPLE #	MW-K	PZ-1	PZ-2	PZ-3	PZ-4	PZ-5	PZ-6	SB-01
PARAMETER	J030015 8/14/00 ug/L	J030006 8/10/00 ug/L	J030011 8/11/00 ug/L	J030012 8/11/00 ug/L	J030002 8/10/00 ug/L	J030008	J030001	J011011
<u> </u>						8/11/00 ug/L	8/10/00 ug/L	8/8/00 ug/L
1,2,4,5-Tetrachlorobenzene	4 ND	4 ND	4 ND	2 ND	10 ND	4 ND	4 ND	4 ND
1,2,4-Trichlorobenzene	4 ND	4 ND	4 ND	2 ND	7 ND	4 ND	4 ND	4 ND
2,4,6-Trichlorophenol	7.36	4 ND	4 ND	2 ND	20 ND	4 ND	4 ND	4 ND
2,4-Dichlorophenol	4 ND	4 ND	4 ND	2 ND	8 ND	4 ND	4 ND	40.7
2,4-Dimethylphenol	4 ND	4 ND	6.64	3.68	71.6	4 ND	4 ND	14.2
2-Chlorophenol	4 ND .	4 ND	4 ND	2 ND	9 ND	4 ND	4 ND	4 ND
Acenaphthene	4 ND	4 ND	4 ND	2 ND	5 ND	4 ND	4 ND	4 ND
Aniline	4 ND	4 ND	4 ND	2 ND	4 ND	4 ND	4 ND	4
Benzo(a)pyrene	4 ND	4 ND	4 ND	2 ND	5 ND	4 ND	4 ND	4 ND
bis(2-Ethylhexyl)phthalate	4 ND	287	4 ND	2 ND	113	46.3	7.73	4 ND
Carbazole	4 ND	4 ND	4 ND	2 ND	24.8	4 ND	4.87	4 ND
Di-n-butyl phthalate	4 ND	4 ND	4 ND	2 ND	4 ND	4 ND	4 ND	4 ND
Dibenzofuran	4 ND	4 ND	4 ND	2 ND	23.1	4 ND	4 ND	4 ND
Fluoranthene	4 ND	4 ND	4 ND	2 ND	47.9	7.23	4.5	4 ND
Fluorene	4 ND	4 ND	4 ND	2 ND	23.3	4 ND	4 ND	4 ND
Hexachlorobutadiene	4 ND	4 ND	4 ND	2 ND	10 ND	5 ND	4 ND	4 ND
Hexachloroethane	5 ND	4 ND	4 ND	3 ND	20 ND	7 ND	5 ND	4 ND
Isophorone	4 ND	4 ND	4 ND	2 ND	4 ND	4 ND	4 ND	4 ND
ın,p-Cresol	87.9	10 ND	28.3	6 ND	434	10 ND	67.3	10 ND
Naphthalene	4 ND	4 ND	57.7	16.9	286	5.48	48.4	4 ND
o-Cresol	5.8	4 ND	8.26	6.33	122	4 ND	14.1	8.8
Pentachlorophenol	19.5	8 ND	71.3	16.1	381	8 ND	82.3	8 ND
Phenanthrene	4.13	4 ND	4 ND	2.47	70.8	7.27	8.73	4 ND
Phenol	166	4 ND	55.1	11.6	347	4 ND	54.5	4 ND

Page: 15 of 31

DATA SUMMARY Shrader Lab Packages

of the first that the first the first that

SAMPLE#	SB-02	SB-03	SMW-01	SMW-02	SMW-03	SMW-04	SMW-04-99	SMW-040
	J011009	J011015	J030018	J011010	J030010	J053017	J011003	J053016
PARAMETER	8/8/00 ug/L	8/9/00 ug/L	8/15/00 ug/L	8/8/00 ug/L	8/14/00 ug/L	8/23/00 ug/L	8/4/00 ug/L	8/23/00 ug/L
1,2,4,5-Tetrachlorobenzene	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
1,2,4-Trichlorobenzene	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
2,4,6-Trichlorophenol	4 ND	8.9 .	2 ND	4 ND	2 ND	4.06	2 ND	4.3
2,4-Dichlorophenol	4 ND	8.72	2 ND	9.24	2 ND	3.98	2 ND	6.61
2,4-Dimethylphenol	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
2-Chlorophenol	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
Acenaphthene	4 ND	4 ND	2 ND	4 ND	2 ND	6.07	2 ND	7.87
Aniline	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
Benzo(a)pyrene	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
bis(2-Ethylhexyl)phthalate	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
Carbazole	4 ND	4 ND	2 ND	4 ND	2 ND	5.68	2 ND	9.55
Di-n-butyl phthalate	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
Dibenzofuran	4 ND	4 ND	2 ND	4 ND	2 ND	4.32	2 ND	6.1
Fluoranthene	4 ND	4 ND	2 ND	4 ND	2 ND	3.61	2 ND	5.11
Fluorene	4 ND	4 ND	2 ND	4 ND	2 ND	4.14	2 ND	6.72
Hexachlorobutadiene	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
Hexachloroethane	4 ND	4 ND	2 ND	4 ND	3 ND	2 ND	2 ND	2 ND
Isophorone	4 ND	4 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND
m,p-Cresol	10 ND	10 ND	6 NĎ	10 ND	6 ND	38.5	6 ND	66.1
Naphthalene	4 ND	4 ND	2 ND	4 ND	2 ND	43.9	2 ND	61.3
o-Cresol	4 ND	4 ND	2 ND	4 ND	2 ND	6.79	2 ND	15.7
Pentachlorophenol	8 ND	8.4	4 ND	8 ND	4 ND	34.8	4 ND	52.3
Phenanthrene	4 ND	4 ND	2 ND	4 ND	2 ND	9.26	2 ND	14
Phenol	4 ND	11	2 ND	4 ND	2 ND	25.8	2 ND	37.5

DATA SUMMARY Shrader Lab Packages

And the first of the first transfer to the first that the first transfer to the first is

SAMPLE#	SMW-05	SMW-05-99	SMW-06	SMW-06-99	SMW-07	SMW-08	SMW-09	SMW-10
	J042002	J011004	J042007	J011005	J011002	J011006	J042009	J042006
PARAMETER	8/16/00 ug/L	8/7/00 ug/L	8/17/00 ug/L	8/7/00 ug/L	8/4/00 ug/L	8/7/00 ug/L	8/18/00 ug/L	8/17/00 ug/L
1,2,4,5-Tetrachlorobenzene	2 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	4 ND
1,2,4-Trichlorobenzene	2 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	4 ND
2,4,6-Trichlorophenol	48.1	2 ND	4.16	2 ND	2 ND	2 ND	27.2	4.19
2,4-Dichlorophenol	34.6	2 ND	4 ND	2 ND	2 ND	2 ND	7.51	4 ND
2,4-Dimethylphenol	39	2 ND	203	2 ND	2 ND	2 ND	2 ND	181
2-Chlorophenol	17.4	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	4 ND
Acenaphthene	5.45	2 ND	4.71	2 ND	2 ND	2 ND	2 ND	11.1
Aniline	2 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	24.8
Benzo(a)pyrene	6.27	2 ND	15	2 ND	2 ND	2 ND	2 ND	21.9
bis(2-Ethylhexyl)phthalate	29.2	2 ND	355	2 ND	2 ND	2 ND	2 ND	266
Carbazole	39.1	2 ND	26.9	2 ND	2 ND	2 ND	2 ND	87.1
Di-n-butyl phthalate	2 ND -	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	4 ND
Dibenzofuran	24.1	2 ND	13	2 ND	2 ND	2 ND	2 ND	58
Fluoranthene	41.6	2 ND	61.9	2 ND	2 ND	2 ND	2 ND	96
Fluorene	33.1	2 ND	20.7	2 ND	2 ND	2 ND	2 ND	60.5
Hexachlorobutadiene	2 ND	2 ND	4 ND	2 ND	2 ND	2 ND	2 ND	4 ND
Hexachloroethane	2 ND	2 ND	4 ND	2 ND	2 ND	2 ND	3 ND	5 ND
Isophorone	2 ND	2 ND	5.57	2 ND	2 ND	2 ND	2 ND	4.99
m,p-Cresol	339	6 ND	658	6 ND	6 ND	6 ND	22.5	699
Naphthalene	224	2 ND	98.8	2 ND	2 ND	2 ND	9.81	911
o-Cresol	78.6	2 ND	192	2 ND	2 ND	2 ND	2 ND	197
Pentachlorophenol	60.6	4 ND	104	4 ND	4 ND	4 ND	4 ND	8 ND
Phenanthrene	87.4	2 ND	75.9	2 ND	2 ND	2 ND	2 ND	211
Phenol	267	2 1 7	595	2 ND	2 ND	2 ND	14.5	820

Page: 17 of 31

DATA SUMMARY Shrader Lab Packages

the first of the first the term of the first that the first the first that the first the first term of

SAMPLE#	SMW-11	SMW-12	SMW-13	SMW-14	SMW-15	SMW-16	SMW-17	SMW-18
	J053004	J042021	J053018	J042019	J042019 J042020		J053008	J042013
PARAMETER	8/22/00 ug/L	8/21/00 ug/L	8/23/00 ug/L	8/21/00 ug/L	8/21/00 ug/L	8/22/00 ug/L	8/22/00 ug/L	8/21/00 ug/L
1,2,4,5-Tetrachlorobenzene	2 ND	4 ND	4 ND	2 ND ·	2 ND	2 ND	2 ND	2 ND
1,2,4-Trichlorobenzene	2 ND	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND
2,4,6-Trichlorophenol	6.53	6.33	7.64	3 ND	2 ND	2 ND	2 ND	2 ND
2,4-Dichlorophenol	2 ND	4 ND	5.96	2 ND	2.79	2 ND	2 ND	2 ND
2,4-Dimethylphenol	42.6	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND
2-Chlorophenol	2 ND	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND
Acenaphthene	2 ND	4 ND	4.15	2 ND	2 ND	2 ND	2 ND	2 ND
Aniline	2 ND	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND
Benzo(a)pyrene	3.43	4 ND	11.7	3.1	2 ND	2 ND	2 ND	2 ND
bis(2-Ethylhexyl)phthalate	2 ND	162	16.6	11.4	280	2 ND	2 ND	5.1
Carbazole	2 ND	6.38	29.4	2 ND	2 ND	2 ND	2 ND	2 ND
Di-n-butyl phthalate	2 ND	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND
Dibenzofuran	2 ND	4 ND	28.4	4.32	2 ND	2 ND	2 ND	2 ND
Fluoranthene	6.63	4 ND	35.6	17.1	2 ND	2 ND	2 ND	2 ND
Fluorene	2 ND	4 ND	32.7	5.06	2 ND	2 ND	2 ND	2 ND
Hexachlorobutadiene	2 ND	4 ND	4 ND	3 ND	2 ND	2 ND	2 ND	2 ND
Hexachloroethane	2 ND	. 4 ND	4 ND	3 ND	2 ND	2 ND	2 ND	2 ND
Isophorone	3.63	4 ND	4 ND	2 ND	2 ND	2 ND	2 ND	2 ND
m,p-Cresol	119	46.7	131	6 ND	6 ND	6 ND	6 ND	6 ND
Naphthalene	3.25	4 ND	490	29.9	2 ND	2 ND	2.42	2 ND
o-Cresol	25.6	4 ND	17.4	3 ND	2 ND	2 ND	2 ND	2 ND
Pentachlorophenol	41.9	79.7	61.5	5 ND	4 ND	4 ND	4 ND	4 ND
Phenanthrene	6.32	4 ND	75.5	19.3	2 ND	2 ND	2 ND	2 ND
Phenol	317	189	166	6.25	2 ND	2 ND	2 ND	194

Page: 18 of 31

DATA SUMMARY Shrader Lab Packages

SAMPLE#	SMW-19	SMW-190	SMW-20	SMW-21	SMW-22	SMW-23	SMW-230	SMW-24
	J042014	J042015	J042016	J042017	J042018	J053005	J053006	J053014
PARAMETER	8/21/00 ug/L	8/22/00 ug/L	8/22/00 ug/L	8/23/00 ug/L				
1,2,4,5-Tetrachlorobenzene	2 ND	2 ND	6 ND	4 ND	4 ND	2 ND	2 ND	2 ND
1,2,4-Trichlorobenzene	2 ND	2 ND	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND
2,4,6-Trichlorophenol	2 ND	2 ND	14.7	4 ND	4 ND	2 ND	2 ND	2 ND
2,4-Dichlorophenol	2 ND	2 ND	49.2	4 ND	4 ND	2 ND	2 ND	2 ND
2,4-Dimethylphenol	2 ND	2 ND	580	4 ND	4 ND	2 ND	2 ND	2 ND
2-Chlorophenol	2 ND	2 ND	43.7	4 ND	4 ND	2 ND	2 ND	2 ND
Acenaphthene	2 ND	2 ND	110	4 ND	4 ND	2 ND	2 ND	2 ND
Aniline	2 ND	2 ND	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND
Benzo(a)pyrene	2 ND	2 ND	966	4 ND	4 ND	2 ND	2 ND	2 ND
bis(2-Ethylhexyl)phthalate	2 ND	2 ND	2510	4 ND	326	2 ND	2 ND	2 ND
Carbazole	2 ND	2 ND	1110	4 ND	4 ND	2 ND	2 ND	2 ND
Di-n-butyl phthalate	2 ND	2 ND	4 ND	4 ND	4 ND	2 ND	2 ND	2 ND
Dibenzofuran	2 ND	2 ND	1080	4 ND	4 ND	2 ND	2 ND	2 ND
Fluoranthene	2 ND	2 ND	3390	4 ND	4 ND	2 ND	2 ND	2 ND
Fluorene	2 ND	2 ND	1250	4 ND	4 ND	2 ND	2 ND	2 ND
Hexachlorobutadiene	2 ND	2 ND	6 ND	4 ND	4 ND	2 ND	2 ND	2 ND
Hexachloroethane	2 ND	2 ND	60 ND	4 ND	4 ND	2 ND	2 ND	2 ND
Isophorone	2 ND	2 ND	7 ND	4 ND	4 ND	2 ND	2 ND	2 ND
m,p-Cresol	6 ND	6 ND	3900	10 ND	46.2	6 ND	6 ND	6 ND
Naphthalene	2 ND	2 ND	5340	4 ND	8.14	2 ND	2 ND	5.39
o-Cresol	2 ND	2 ND	1210	4 ND	4 ND	2 ND	2 ND	2 ND
Pentachlorophenol	4 ND	4 ND	254	8 ND	8 ND	4 ND	4. ND	4 ND
Phenanthrene	2 ND	2 ND	4820	4 ND	4 ND	2 ND	2 ND	2 ND
Phenol	2 ND	2 ND	2310	4 ND	39.1	2 ND	2 ND	2 ND

Page: 19 of 31

Control to the first field that the first teach that the first teach that the first teach that the

Printed: 1-30-01

	,	,	,	
SAMPLE#	SMW-25	SMW-26	SMW-260	SMW-27
PARAMETER	J053015	J053011	J053012	J053013
PARAMETER	8/23/00 ug/L	8/23/00 ug/L	8/23/00 ug/L	8/23/00 ug/L
1,2,4,5-Tetrachlorobenzene	2 ND	2 ND	2 ND	2 ND
1,2,4-Trichlorobenzene	2 ND	2 ND	2 ND	2 ND
2,4,6-Trichlorophenol	9.83	3.89	2.97	2.52
2,4-Dichlorophenol	8.54	5.61	6.11	4.24
2,4-Dimethylphenol	2 ND	2 ND	3.19	832
2-Chlorophenol	2 ND	2 ND	2 ND	2 ND
Acenaphthene	2 ND	2.16	2.41	2 ND
Aniline	2 ND	2 ND	2 ND	4.31
Benzo(a)pyrene	2 ND	2 ND	2 ND	4.03
bis(2-Ethylhexyl)phthalate	2 ND	2 ND	2 ND	5.62
Carbazole	2 ND	10.3	11.6	19.7
Di-n-butyl phthalate	2 ND	2 ND	2 ND	2 ND
Dibenzofuran	2 ND	7.33	7.3	10.3
Fluoranthene	2 ND	2.87	3.22	9.6
Fluorene	2 ND	8.19	8.44	11.6
Hexachlorobutadiene	2 ND	2 ND	2 ND	2 ND
Hexachloroethane	2 ND	2 ND	2 ND	2 ND
Isophorone	2 ND	2 ND	2 ND	2 ND
m,p-Cresol	6 ND	26.9	62.5	428
Naphthalene -	13.3	208	247	236
o-Cresol	2 ND	2 ND	6.99	85.2
Pentachlorophenol	4 ND	55.9	69.6	32
Phenanthrene	2 ND	11.7	12.9	19.8
Phenol	2 ND	28.4	39.4	328

DATA SUMMARY Shrader Lab Packages

PCBs

SAMPLE # PARAMETER		J06200	BMW-1 DMW-01 DMW-0 J062003 J030009 J011010 8/25/00 8/11/00 8/9/00		1016	DMW-03 J030019 8/15/00		DMW-04 J030014 8/14/00		DMW-05 J011019 8/9/00		DMW-06 J011018 8/9/00			
Arochlor-1242	(ug/L)	0.2 N	D ().2 N	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND
Arochlor-1248	(ug/L)	0.2 N	D ().2 N	4D	0.2	ND	0.2	ND	0.2	NĎ	0.2	ND	0.2	ND
Arochlor-1254	(ug/L)	0.2 N	D ().2 N	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND
Arochlor-1260	(ug/L)	0.2 N	D ().2 N	۷D	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND
Total PCBs	(ug/L)	0.2 N	D (<u>,</u> 2 N	1D	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND

the tight of the term of the term that the term and the term that the

Metals

Arsenic	(mg/L)	0.004 ND	0.025						
Barium	(mg/L)	0.021	0.034	0.057	0.018	0.021	0.028	0.023	
Cadmium	(mg/L)	0.0005 ND							
Calcium	(mg/L)	517	268	281	556	359	324	239	
Chromium	(mg/L)	0.004 ND							
Copper	(mg/L)	0.004 ND	0.007	0.004 ND	0.004 ND	0.004 ND	0.006	0.004 ND	
Lead	(mg/L)	0.002 ND	0.008	0.004	0.002 ND	0.002	0.004	0.004	
Magnesium	(mg/L)	204	147	116	267	172	161	14.2	
Mercury	(mg/L)	0.0002 ND							
Selenium	(mg/L)	0.004 ND	0.005	0.004 ND					
Sodium	(mg/L)	102	106	344	185	286	102	309	
Zinc	(mg/L)	0.01 ND	0.022	0.024	0.013	0.019	0.032	0.01 ND	

Inorganics

Cyanide, Total (mg/L)	0.005 ND	0.005 ND	0.008	0.005 ND	0.005 ND	0.005 ND	0.029
Nitrogen, Ammonia (mg/L)	0.67	0.25 ND	0.42	0.27	0.94	0.28	0.72

Chemical Oxygen Demand (mg/L)	134	10	84	10 ND	22	30	50
Chloride (mg/L)	158	192	557	402	641	151	661
Hardness (mg CaCO3/L)	2130	1270	1180	2490	1600	1470	655
pH at 25 deg C	7.16	7.1	7.04	8.67	7	7.32	9.28
Sulfate (mg/L)	1770	1050	710	278	1050	1230	390
Sulfide (mg/L)	62.6	0.02 ND	0.02 ND	0.07	0.02 ND	0.02 ND	0.02 ND

DATA SUMMARY Shrader Lab Packages

PCBs

SAMPLE #		J06	W-09 2005 8/00	J062	V-090 2006 8/00	DMV J053 8/23	3019	J06	W-11 2001 4/00	J06	W-12 2008 9/00	DMV J062 8/24	2002	J04	W-01 2011 8/00
Arochlor-1242	(ug/L)	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND
Arochlor-1248	(ug/L)	0.2	ND	0.2	ND	0,2	ND	0.2	ND	0.2	ND	0.2	NĎ	0.2	ND
Arochlor-1254	(ug/L)	0.2	ND	0.2	ND	0.2	ND	0.2	ND .	0.2	ND	0.2	ND	0.2	ND
Arochlor-1260	(ug/L)	0.2	ND	0.2	ŊD	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND
Total PCBs	(ug/L)	0.2	ND	0.2	ND	0.2	NĎ	0.2	ND	0.2	ND	0.2	ND.	0.2	ND

or a first to the total that the transfer that the tend that the tend that the transfer to the

Metals

Arsenic	(mg/L)	0.004 ND	0.005					
Barium	(mg/L)	0.043	0.044	0.057	0.105	0.055	0.094	0.098
Cadmium	(mg/L)	0.0005 ND						
Calcium	(mg/L)	410	385	377	355	431	324	242
Chromium	(mg/L)	0.004 ND	0.004 ND	0.004 ND	0.007	0.012	0.004 ND	0.094
Соррег	(mg/L)	0.008	0.008	0.004 ND	0.011	0.011	0.004	0.011
Lead	(mg/L)	0.007	0,008	0.002	0.005	0.006	0.01	0.004
Magnesium	(mg/L)	194	187	198	169	104	168	_ 117
Mercury	(mg/L)	0.0002 ND						
Selenium	(mg/L)	0.004 ND	0.004 ND	0.004	0.004 ND	0.006	0.004 ND	0.004 ND
Sodium	(mg/L)	89	83.7	96	157	102	79.1	437
Zinc	(mg/L)	0.071	0.066	0.013	0.027	0.02	0.018	0.01 ND

Inorganics Cyanide, Total (mg/L)

General Chemistry

Nitrogen, Ammonia (mg/L)	0.76	0.56	1.08	0.46		0.67	0.47
Chemical Oxygen Demand (mg/L)	44	22	15	57		22	55
Chloride (mg/L)	242	243	142	328		166	487
Hardness (mg CaCO3/L)	1820	1730	1760	1580	1500	1500	1090
pH at 25 deg C	7.21	2.27	7.66	6.91		7.3	6.85
Sulfate (mg/L)	1250	1250	1640	1300		1250	131

0.005 ND

0.017

0.02 ND

0.005 ND

0.02 ND

0.005

0.02 ND

ND

0.005 ND

0.005 ND

0.02 ND

0.03

0.039

Sulfide (mg/L)

DATA SUMMARY Shrader Lab Packages

PCBs

SAMPLE #	IMW-010	IMW-05	IMW-06	IMW-09	IMW-11	IMW-110	IMW-12
	J042005	J042001	J042008	J042010	J053002	J053003	J053001
PARAMETER	8/17/00	8/16/00	8/17/00	8/18/00	8/22/00	8/22/00	8/22/00
Arochlor-1242 (ug/L)	0.2 ND						
Arochlor-1248 (ug/L)	0.2 ND	4.0	0.2 ND				
Arochlor-1254 (ug/L)	48.2	0.2 ND	14.3	0.2 ND	0.2 ND	0.2 ND	3.61
Arochlor-1260 (ug/L)	0.2 ND						
Total PCBs (ug/L)	48.2	4.0	14.3	0.2 ND	0.2 ND	0.2 ND	3.61

to a few tools to be to the few to the few tools the few the few the few tools the few

Metals

Arsenic	(mg/L)	13.1	0.773	15.7	0.081	5.02	4.89	0.318
Barium	(mg/L)	0.128	0.067	0.026	0.062	0.139	0.128	0.343
Cadmium	(mg/L)	0.002 ND	0.006	0.002 ND	0.0005 ND	0.0005 ND	0.002 ND	0.002 ND
Calcium	(mg/L)	8	16.2	15.1	5.8	7.9	7.5	3.2
Chromium	(mg/L)	0.405	0.197	0.255	0.051	0.901	0.857	1.22
Соррег	(mg/L)	0.016	0.078	0.022	0.032	0.028	0.04	0.014
Lead	(mg/L)	0.059	0.048	0.025	0.064	. 0.008 ND	0.01	0.02
Magnesium	(mg/L)	0.7	21.4	0.5 ND	1.2	0.5 ND	0.5 ND	0.5 ND
Mercury	(mg/L)	0.487	0.0996	0.487	0.0219	0.0387	0.0494	0.0016
Selenium	(mg/L)	0.015	ũ.01	0.013	0.004 ND	0.024	0.023	0.018
Sodium	(mg/L)	10800	4510	9480	1970	9280	9360	17600
Zinc	(mg/L)	0.068	0.206	0.045	0.058	0.044	0.062	0.046

Inorganics

cs	Cyanide, Total (mg/L)	15.7	3,3	9.28	1.12	5.95	6.04	16.5
	Nitrogen, Ammonia (mg/L)	38.3	8.8	33.4	4.1	40.1	40.3	58.7

Chemical Oxygen Demand (mg/L)	3920	2840	4090	522	3560	3650	4930
Chloride (mg/L)	949	1100	827	849	933	835	1180
Hardness (mg CaCO3/L)	22.9	129	37.7	19.4	19.7	18.7	. 8
pH at 25 deg C	12.66	10.22	12.5	10.18	11.33	11.3	10.35
Sulfate (mg/L)	2550	1150	1550	100	740	770	85
Sulfide (mg/L)	14.4	1.02	12.8	11.3	27.6	24.8	6.9

DATA SUMMARY Shrader Lab Packages

PCBs

SAMPLE # PARAMETER		JMW-13 J053007 8/22/00	MW-A J030013 8/11/00	MW-B J030004 8/10/00	MW-C J030005 8/10/00	MW-D J011012 8/8/00	MW-D0 J011013 8/8/00	MW-E J011017 8/9/00
Arochlor-1242	(ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1248	(ug/L)	0.2 ND	0.2 ND	3.74	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1254	(ug/L)	4.35	0.2 ND	0.2 ND	0.2 ND	6.04	4.51	0.2 ND
Arochlor-1260	(ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Total PCBs	(ug/L)	4.35	0.2 ND	3.74	0.2 ND	6.04	4.51	0.2 ND

THE REPORT OF THE PART OF THE

Metals

Arsenic	(mg/L)	1.49	0.068	0.683	0.079	14.3	13.7	2.22
Barium	(mg/L)	0.329	0.011	0.043	0.043	0.021	0.019	0.021
Cadmium	(nig/L)	0.002 ND	0.0005 ND	0.0005 ND	0.0005 ND	0.002 ND	0.002 ND	0.0014
Calcium	(mg/L)	11.6	12.1	2.4	57.5	4.8	4.5	15.4
Chromium	(mg/L)	0.684	0.049	0.194	0.013	0.129	0.123	0.068
Соррег	(mg/L)	0.032	0.004 ND	0.009	0.019	0.013	0.012	0.079
Lead	(mg/L)	0.009	0.004	0.014	0.019	0.011	0.011	0.798
Magnesium	(mg/L)	2.5	10.6	1	31.5	0.5 ND	0.5 ND	3.5
Mercury	(mg/L)	2.32	0.0021	0.019	0.0013	0.919	0.716	0.341
Selenium	(mg/L)	0.033	0.004 ND	0.008	0.004 ND	0.01	0.009	0.004
Sodium	(mg/L)	14200	1760	4590	728	9520	9390	1950
Zinc	(mg/L)	0.081	0.02	0.035	0.014	0.02 ND	0.02 ND	0.224

Inorganics

cs Cyanide, Total (mg/L)	7.62	0.78	2.91	5.65	9.56	9.47	1.49
Nitrogen, Ammonia (mg/L)	95.1	7.98	12.3	3.45	28.6	28.8	6.95

Chemical Oxygen Demand (mg/L)	8470	727	3220	671	2200	2200	745
Chloride (mg/L)	893	441	1010	197	613	622	235
Hardness (mg CaCO3/L)	39.3	73.9	10.1	273	12	11.2	52.9
pH at 25 deg C	10.63	9.6	10.2	9	12.32	12.36	11.52
Sulfate (mg/L)	1050	200	750	460	1750	1750	550
Sulfide (mg/L)	13.3	19.5	38.2	1.4	3.73	3.89	0.48

DATA SUMMARY Shrader Lab Packages

PCBs

SAMPLÉ PARAMETER	! -	MW-G J011007 8/7/00	MW-H J030020 8/15/00	MW-I J030021 8/15/00	MW-J J042003 8/16/00	MW-K J030015 8/14/00	PZ-1 J030006 8/10/00	PZ-2 J030011 8/11/00
Arochlor-1242	(ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1248	(ug/L)	0.2 ND	0.2 ND	0.646	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1254	(ug/L)	0.2 ND	0,2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1260	(ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Total PCBs	(ug/L)	0.2 ND	0.2 ND	0.646	0.2 ND	0.2 ND	0.2 ND	0.2 ND

to a second to the total to the total to the total and second to the total second to the second second second

Metals

Arsenic	(mg/L)	0.004 ND	0.168	0.869	0.127	0.201	0.122	0.159
Barium	(mg/L)	0.05	0.167	0.039	0.258	0.167	0.396	0.062
Cadmium	(mg/L)	0.0005 ND	0.001 ND	0.0009	0.002 ND	0.002 ND	0.0005 ND	0.0005 ND
Calcium	(mg/L)	192	71.2	9.9	3.4	1.9	11.6	2.9
Chromium	(mg/L)	0.011	0.286	0.046	0.286	0.663	0.164	0.092
Соррег	(mg/L)	0.011	0.029	0.044	0.029	0.019	0.013	0.006
Lead	(mg/L)	0.004	0.004 ND	0.012	0.069	0.008 ND	0.006	0.005
Magnesium	(mg/L)	276	126	15.9	13.9	0.6	3.4	0.5 ND
Mercury	(mg/L)	0.0003	0.0012	0.0008	0.113	0.0387	0.0016	0.0147
Selenium	(mg/L)	0.004 ND	0.022	0.004 ND	0.008 ND	0.018	0.009	0.004
Sodium	(mg/L)	1630	5050	1560	11400	16600	4470	3620
Zinc	(mg/L)	0.035	0.027	0.051	0.045	0.041	0.027	0.014

Inorganics

s Cyanide, Total (mg/L)	0.185	2.81	0.51	2.78	24.8	2.1	1.33
Nitrogen, Ammonia (mg/L)	5.06	9.18	5.61	32	58.2	4.55	10.9

Chemical Oxygen Demand (mg/L)	221	3660	789	2660	4400	1580	894
Chloride (mg/L)	166	1420	539	528	1340	3590	1050
Hardness (mg CaCO3/L)	1620	697	90.2	65.7	7.22	43	7.2
pH at 25 deg C	7.58	8.6	9.47	10.26	9.6	9.7	10.1
Sulfate (mg/L)	2640	269	770	66	150	142	55
Sulfide (mg/L)	4.56	0.35	4.7	7.73	6.8	0.2 ND	21.6

DATA SUMMARY Shrader Lab Packages

PCBs

SAMPLE PARAMETER		1	J030012 1/00	1	J030002 D/00		J030008 I/00		J030001 0/00	J01	-01 1011 3/00	J01	i-02 1009 i/00	J01	1015 1000
Arochlor-1242	(ug/L)	0.2	ND	0.2	ND	0.2	ND								
Arochlor-1248	(ug/L)	0.2	ND	0.2	ND	0.2	ND								
Arochlor-1254	(ug/L)	0.2	ND	6.	55	0.3	91	0.2	ND	0.2	ND	0.2	ND	0.2	ND
Arochlor-1260	(ug/L)	0.	ЙD	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND	0.2	ND
Total PCBs	(ug/L)	0.2	ND	6.	55	0.3	91	0.2	ND	0.2	ND	0.2	ND	0.2	ND

the first of the Contractor and the body to the Contractor and Contractor and the Contractor and the Contractor and the Contrac

Metals

Arsenic	(mg/L)	0.035	0.262	0.308	0.065	0.622	0.011	0.216
Barium	(mg/L)	0.021	0:038	0.368	0.024	0.375	0.075	0.096
Cadmium	(mg/L)	0.0005 ND	0.0025 ND	0.0005 ND	0.0005 ND	0.002 ND	0.0005 ND	0.002
Calcium	(mg/L)	6.1	3.1	29.8	3.7	17.1	162	4.2
Čhromium	(mg/L)	0.017	0.142	0.428	0.05	0.463	0.017	3.43
Copper	(mg/L)	0.022	0.015	0.06	0.032	0.032	0.023	0.298
Lead	(mg/L)	0.022	0.039	0.005	0.113	0.01	0.021	0.054
Magnesium	(mg/L)	2.8	0.5 ND	42.1	2.2	24.5	111	7.6
Mercury	(mg/L)	0.0034	0.372	0.0033	0.0181	0.0008	0.0003	0.0296
Selenium	(mg/L)	0.004 ND	0.01	0.03	0.004 ND	0.019	0.004 ND	0.034
Sodium	(mg/L)	1130	6120	5230	1560	6710	1110	13200
Zinc	(mg/L)	0.01 ND	0.033	0.062	0.065	0.125	0.022	0.145

Inorganics

Cyanide, Total (mg/L)	0.53	2.42	10.3	1.18	4.75	0.098	2.48
Nitrogen, Ammonia (mg/L)	1.69	15.8	13.6	2.71	42.1	8.12	46.1

Chemical Oxygen Demand (mg/L)	266	3140	6120	695	1550	191	4000
Chloride (mg/L)	316	1420	3260	742	590	331	1580
Hardness (mg CaCO3/L)	26.8	7.7	248	18.3	144	862	41.8
pH at 25 deg C	9.5	11.3	9.2	10.03	9.25	7.7	9.61
Sulfate (mg/L)	206	750	180	630	960	2000	2000
Sulfide (mg/L)	7	14.3	1.7	8.8	16.5	0.47	1.5

DATA SUMMARY Shrader Lab Packages

PCBs

SAMPLE # PARAMETER	SMW-01 J030018 8/15/00	SMW-02 J011010 8/8/00	SMW-03 J030010 8/14/00	SMW-04 J053017 8/23/00	SMW-04-99 J011003 8/4/00	SMW-040 J053016 8/23/00	SMW-05 J042002 8/16/00
Arochlor-1242 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1248 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	2.58
Arochlor-1254 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1260 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Total PCBs (ug/L)	0. ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	2.58

the first term that the first term is the first that the term that the first term is the first term in the first term is the first term in
Metals

	 	1 2 2 2 2		· · · · · · · · · · · · · · · · · · ·		2 2 2 3 2 2 2 2		
Arsenic	(mg/L)	0.055	0.201	0.004 ND	0.095	0.004 ND	0.101	0.526
Barium	(mg/L)	0.135	0.281	0.07	0.107	0.032	0.1	0.019
Cadmium	(mg/L)	0.0005 ND	0.001 ND	0.0005 ND	0.001 ND	0.0022	0.0005 ND	0.0005 ND
Calcium	(mg/L)	39.8	97.6	81.8	4	493	3.9	39.9
Chromium	(mg/L)	0.071	0,566	0.004 ND	0.071	0.004 ND	0.072	0.079
Copper	(mg/L)	0.018	0.032	0.008	0.008	0.009	0.006	0.018
Lead	(mg/L)	0.006	0.012	0.004 ND	0.006	0.004	0.005	0.016
Magnesium	(mg/L)	54	49.9	39.7	5.9	350	6.2	22.7
Mercury	(mg/L)	0.0003	0.0009	0.0002 ND	0.0009	0.0002 ND	0.0006	0.0189
Selenium	(mg/L)	0.004 ND	0.011	0.004 ND	0.004 ND	0.008 ND	0.004 ND	0.004
Sodium	(mg/L)	1340	3980	766	2300	445	2490	2950
Zinc	(mg/L)	0.02	0.042	0.014	0.03	0.099	0.028	0.049

Inorganics

Cyanide, Total (mg/L)	0.45	0.79	0.035	0.936	0.006	0.943	2.07
Nitrogen, Ammonia (mg/L)	1.94	24.4	0.58	10.8	3.98	10.5	7.34

Chemical Oxygen Demand (mg/L)	708	2140	82	1020	35	1010	1480
Chloride (mg/L)	206	664	80.5	561	138	590	564
Hardness (mg CaCO3/L)	322	449	368	34.3	2670	35.3	193
pH at 25 deg C	7.2	8.49	7.8	9.77	6.25	9.77	9.92
Sulfate (mg/L)	300	192	570	26	2390	. 25	1960
Sulfide (mg/L)	0.74	0.22	0.02 ND	15.2	0.02 ND	19.7	6.9

DATA SUMMARY Shrader Lab Packages

والرابية المنكل المنظل الربط الأعلية والمنطاع المنطاع المنطاع المنطاع المنطاع المنطاع المنطاع المنطاع المنطاع المنطاع

PCBs

SAMPLE # PARAMETER	SMW-05-99 J011004 8/7/00	SMW-06 J042007 8/17/00	SMW-06-99 J011005 8/7/00	SMW-07 J011002 8/4/00	SMW-08 J011001 8/4/00	SMW-09 J042009 8/18/00	SMW-10 J042006 8/17/00
Arochlor-1242 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1248 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1254 (ug/L)	0.2 ND	11.0	0.2 ND	0.2 ND	0.2 ND	0.2 ND	53.5
Arochlor-1260 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Total PCBs (ug/L)	0.2 ND	11.0	0.2 ND	0.2 ND	0.2 ND	0.2 ND	53.5

Metals

Arsenic	(mg/L)	0.004 ND	15.3	0.106	0.004 ND	0.004 ND	0.053	11.4
Barium	(mg/L)	0.053	0.016	0.121	0.071	0.054	0.028	0.153
Cadmium	(mg/L)	0.0005 ND	0.002 ND	0.0005 ND	0.001 ND	0.0005 ND	0.0005 ND	0.002
Calcium	(mg/L)	250	12.3	6.4	226	265	4.6	12.7
Chromium	(mg/L)	0.006	0.178	0.044	0.004 ND	0.004 ND	0.026	0.299
Copper	(mg/L)	0.008	0.013	0.017	0.01	0.008	0.018	0.021
Lead	(mg/L)	0.002 ND	0.01	0.003	0.003	0.002 ND	0.042	0.077
Magnesium	(mg/L)	154	0.5 ND	57.2	52.6	83.4	0.9	0.7
Mercury	(mg/L)	0.0002 ND	0.423	0.0005	0.0002 ND	0.0002 ND	0.0174	0.291
Selenium	(mg/L)	0.004 ND	0.013	0.005	0.004 ND	0.004 ND	0.004 ND	0.015
Sodium	(mg/L)	816	9340	5170	318	295	1390	10500
Zinc	(mg/L)	0.01 ND	0.028	0.018	0.031	0.033	0.022	0.062

Inorganics

Cyanide, Total (mg/L)	0.131	9.72	0.582	0.006	0.005 ND	0.9	15.1
Nitrogen, Ammonia (mg/L)	0.31	33.8	17.6	0.76	1.52	2.37	37.5

Chemical Oxygen Demand (mg/L)	65	2720	305	40	35	370	3780
Chloride (mg/L)	127	808	1710	· 121	74	434	1010
Hardness (mg CaCO3/L)	1260	30.7	252	781	1010	15.2	34.6
pH at 25 deg C	7.43	13.1	8,5	7.32	7.14	9.86	12.87
Sulfate (mg/L)	1950	1600	725	670	800	110	2550
Sulfide (mg/L)	0.02 ND	12.5	36.2	0.02 ND	0.02 ND	13.2	14.8

DATA SUMMARY Shrader Lab Packages

that that that they that that that the

PCBs

SAMPLE PARAMETER		SMV J053 8/22	004	J04	W-12 2021 1/00	J05	W-13 3018 3/00	J04	W-14 2019 1/00	SMW-15 J042020 8/21/00	J05.	W-16 3009 2/00	J05	W-17 3008 2/00
Arochlor-1242	(ug/L)	0.2	ND	0.2	ND	0.2	ND	0.2	ND		0.2	ND	0.2	ND
Arochlor-1248	(ug/L)	0.2	ND	0.2	ND	0.2	ND	0.2	ND		0.2	ND _	0.2	ND
Arochlor-1254	(ug/L)	0.2	ND	0.2	ND	0.2	ND	0.2	ND		0.2	ND	0.2	ND
Arochlor-1260	(ug/L)	0.2	ND	0.2	ND	0.2	ND	0.2	ND		0.2	ND	0.2	ND
Total PCBs	(ug/L)	0.2	ND	0.2	ND	0.2	ND	0.2	ND	******	0.2	ND	0.2	ND

Metals

Arsenic	(mg/L)	6.61	0.753	0.341	0.019	0.044	0.004 ND	0.005
Barium	(mg/L)	0.228	0.132	0.065	0.096	0.068	0.044	1.05
Cadmium	(mg/L)	0.001 ND	0.002 ND	0.001 ND	0.001 ND	0.0005 ND	0.0005 ND	0.0005 ND
Calcium	(mg/L)	13.1	3	27.8	93.4	23	106	27.7
Chromium	(mg/L)	0.97	0.586	0.202	0.009	0.006	0.033	0.004 ND
Copper	(mg/L)	0.039	0.087	0.048	0.004	0.06	0.004 ND	0.004 ND
Lead	(mg/L)	0.014	0.105	0.054	0.004 ND	0.002	0.002 ND	0.007
Magnesium	(mg/L)	0.5 ND	0.5 ND	1.4	42.2	18.4	0.5 ND	4.5
Mercury	(mg/L)	0.037	0.0269	0.259	0.001	0.0003	0.0002 ND	0.0002 ND
Selenium	(mg/L)	0.029	0.037	0.011	0.004 ND	0.006	0.004 ND	0.004 ND
Sodium	(mg/L)	6880	22200	5260	580	2120	64.8	13.2
Zinc	(mg/L)	0.097	0.057	0.096	0.01 ND	0.021	0.01 ND	0.01 ND

Inorganics

Cyanide, Total (mg/L)	12.4	16	2.72	0.062	 0.005 ND	0.48
Nitrogen, Ammonia (mg/L)	50	37.8	39,7	0.89	 0.38	6.05

Chemical Oxygen Demand (mg/L)	5070	3230	3350	194		10 ND	119
Chloride (mg/L)	1030	1250	531	81.1		72.6	11.2
Hardness (mg CaCO3/L)	32.7	7.49	75.2	407	133	265	87.7
pH at 25 deg C	11.16	10.49	11.37	8.5		11.63	9.98
Sulfate (mg/L)	770	150	2040	400		112	38
Sulfide (mg/L)	21.6	1.95	6.79	0.67	0.05	0.02 ND	1.5

DATA SUMMARY Shrader Lab Packages

PCBs

SAMPLE # PARAMETER	SMW-18 J042013 8/21/00	SMW-19 J042014 8/21/00	SMW-190 J042015 8/21/00	SMW-20 J042016 8/21/00	SMW-21 J042017 8/21/00	SMW-22 J042018 8/21/00	SMW-23 J053005 8/22/00
Arochlor-1242 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1248 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1254 (ug/L)	0.2 ND	0.2 ND	0.2 ND	59.4	0.2 ND	0.2 ND	0.2 ND
Arochlor-1260 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Total PCBs (ug/L)	0.2 ND	0.2 ND	0.2 ND	59.4	0.2 ND	0.2 ND	0.2 ND

the form the first term to the first term to the table term that the term that the

Metals

Arsenic	(mg/L)	0.008	0.005	0.004 ND	0.734	0.006	0.301	0.089
Barium	(mg/L)	0.07	0.485	0.47	0.033	0.049	0.428	0.087
Cadmium	(mg/L)	0.0005 ND	0.0005 ND	0.0005 ND	0.001 ND	0.0005 ND	0.001 ND	0.0005 ND
Calcium	(mg/L)	124	68.1	64.2	20	211	3.8	84.4
Chromium	(mg/L)	0.004 ND	0.004 ND	0.004 ND	0.496	0.004 ND	0.89	0.04
Соррег	(mg/L)	0.004 ND	0.004 ND	0.004 ND	0.028	0.013	0.048	0.019
Lead	(mg/L)	0.005	0.006	0.003	0.035	0.004	0.097	0.004
Magnesium	(mg/L)	6	13.2	12.4	0.5 ND	308	5.5	82.3
Mercury	(mg/L)	0.0002 ND	0.0002 ND	0.0002 ND	1.71	0.0008	0.0269	0.0002 ND
Selenium	(mg/L)	0.004 ND	0.004 ND	0.004 ND	0.022	0.004 ND	0.027	0.004 ND
Sodium	(mg/L)	.161	82.4	78.4	9750	939	11200	786
Zinc	(mg/L)	0.01 ND	0.012	0.01 ND	0.094	0.01 ND	0.101	0.029

Inorganics

s Cyanide, Total (mg/L)	0.006	0.009	0.027	3.36	0.013	6.44	0.087
Nitrogen, Ammonia (mg/L)	9.47	3.94	3.96	23.4	0.48	78.2	8.29

Chemical Oxygen Demand (mg/L)	130	47	52	9160	97	6310	102
Chloride (mg/L)	298	63.4	61.4	1410	109	1500	222
Hardness (mg CaCO3/L)	334	224	211	49.9	1800	32.1	550
pH at 25 deg C	11.17	7.29	7.1	12.08	7.43	9.22	8.55
Sulfate (mg/L)	56	34	34	2400	2280	154	1150
Sulfide (mg/L)	1.16	0.03	0.04	12.2	0.07	6.9	0.06

DATA SUMMARY Shrader Lab Packages

PCBs

SAMPLE # PARAMETER	SMW-230 J053006 8/22/00	SMW-24 J053014 8/23/00	SMW-25 J053015 8/23/00	SMW-26 J053011 8/23/00	SMW-260 J053012 8/23/00	SMW-27 J053013 8/23/00
Arochior-1242 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1248 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1254 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Arochlor-1260 (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND
Total PCBs (ug/L)	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND	0.2 ND

the Carlotte and Carlotte Carl

Metals

			<u> </u>	•			
Arsenic	(mg/L)	0.1	0.063	0.023	0.186	0.189	20.2
Barium	(mg/L)	0.091	0.022	0.011	0.014	0.015	0.034
Cadmium	(mg/L)	0.0005 ND	0.0005 ND	0.0005 ND	0.0032	0.0035	0.0054
Calcium	(mg/L)	92.2	8.2	13.1	15	20.2	5.8
Chromium	(mg/L)	0.03	0.024	0.019	0.021	0.021	0.254
Copper	(mg/L)	0.013	0.004 ND	0.004	0.036	0.038	0.039
Lead	(mg/L)	0.002	0.002 ND	0.005	0.142	0.158	0.121
Magnesium	(mg/L)	85.6	44.6	10	0.5 ND	0.5 ND	0.5 ND
Mercury	(mg/L)	0.0002 ND	0.0009	0.0008	0.0235	0.0218	0.739
Selenium	(mg/L)	0.004 ND	0.004 ND	0.004 ND	0.004 ND	0.004 ND	0.011
Sodium	(mg/L)	769	1870	1030	820	865	6230
Zinc	(mg/L)	0.01 ND	0.01 ND	0.015	0.154	0.16	0.299

Inorganics

Cyanide, Total (mg/L)	0.09	0.686	0.337	0.451	0.436	1.91
Nitrogen, Ammonia (mg/L)	8.31	4.23	1.53	4.67	4.63	17.6

Chemical Oxygen Demand (mg/L)	89	283	204	342	350	925
Chloride (mg/L)	202	218	233	261	247	335
Hardness (mg CaCO3/L)	z 583	204	73.9	37.5	50.4	14.5
pH at 25 deg C	8.35	9.44	9.5	11.38	11.34	11.42
Sulfate (mg/L)	1150	920	620	1050	1050	1050
Sulfide (mg/L)	0.05	15.3	11.3	2.63	2.79	6.58

BASF Riverview, Michigan Soil Samples Detected Dioxins

Printed: 1--01

DATA SUMMARY Pace Lab Data Package

DMW-12 (04'-06') IMW-06 (0'-02') SMW-04 (04'-06') IMW-05 (0'-02') IMW-13 (04'-06') SAMPLE# 2234283 8/8/00 2234325 2234317 2234291 2234309 CONGENER 8/3/00 ng/kg 8/1/00 ng/kg 8/8/00 ng/kg 8/3/00 ng/kg ng/kg 0.92 J 1,2,3,4,6,7,8-HpCDD 3300 540 1700 1700 HpCDD, Total 2 J 6500 3300 1100 3300 1,2,3,4,6,7,8-HpCDF 0.28 ND 380 39 61 61 1,2,3,4,7,8,9-HpCDF 0.63 ND 52 7.9 J 4.9 J 4.9 J HpCDF, Total 0.45 ND 1900 95 370 370 0.45 ND 9.9 1,2,3,4,7,8-HxCDD 19 ND 5 J 9.9 1,2,3,6,7,8-HxCDD 0.43 ND 100 22 J 50 50 1,2,3,7,8,9-HxCDD 39 13 J 26 0.46 ND 26 570 HxCDD, Total 940 570 0.45 ND 260 8.9 1,2,3,4,7,8-HxCDF 0.23 ND 110 17 J 8.9 30 1,2,3,6,7,8-HxCDF 0.25 ND 8.8 E 17 E 17 E 1.7 J 1,2,3,7,8,9-HxCDF 0.19 ND 16 ND 4.7 J 1.7 J 2,3,4,6,7,8-HxCDF 0.33 ND 25 I 4.4 I 5 5 110 HxCDF, Total 0.25 ND 560 65 110 13 6.3 · I 4.9 I 13 1,2,3,7,8-PeCDD 0.4 ND 4.5 ND 8.1 J 83 83 PeCDD, Total 0.4 ND 0.29 ND 40 8.6 J 5.5 5.5 1,2,3,7,8-PeCDF 33 8.3 J 4.7 J 4.7 J 2,3,4,7,8-PeCDF 0.38 ND 180 0.34 ND 47 30 30 PeCDF, Total 0.22 5.7 5.7 2,3,7,8-TCDD ND 2.6 ND 2.2 I 7.2 TCDD, Total 0.22 ND 21 27 27 2,3,7,8-TCDF 0.23 ND 56 10 6.9 6.9 54 26 26 TCDF, Total 0.23 ND 210 OCDD 9.6 BJ 25000 5000 18000 18000 OCDF 1700 87 290 290 0.74 ND

ND = Results reported below laboratory detection limits.

See Data Quality Assessment Report for qualified data.

Regulatory standards are based on potency.

Table E-6
BASF Riverview, Michigan
Groundwater Samples
Relative Potency of Dioxins
Printed: 1-24-01

Source: Pace Laboratory

1	IJ	R		
•		é.	_	

				SMW-5			SMW-6			SMW-13	3
:			1								
	TEF	TEF	Conc.	Toxic	Toxic	Conc.	Toxic	Toxic	Conc.	Toxic	Toxic
Congener	1997	1989	(ng/L)	Equiv. ('97)	Equiv. ('89)	(ng/L)	Equiv. ('97)	Equiv. ('89)	(ng/L)	Equiv. ('97)	Equiv. ('89
2378-TCDD		1	0.0078	0.008	0.008	0.007	0.007	0.007	0	0.000	0.000
12378-PeCDD	1 ;	0.5	0.0070	0.000	0.000	0.007	0.007	0.007		0.000	
123678-HxCDD	0.1	0.1	0.045	0.005	0.005	0.024	0.024	0.012	_	0.000	0.00
123789-HxCDD	0.1	0.1	0.012	0.003	0.003	0.031	0.005	0.005	0.006	0.001	0.00
123478-HxCDD	0.1	0.1	0.0064	0.001	0.001	0.046	0.003	0.003		0.000	
1234678HpCDD	0.01	0.01	0.0004	0.004	0.004	1.7	0.017	0.017	0.24	0.000	0.00
OCDD	0.0001		2.1	0.000	0.002	11	0.001	0.011	1.2	0.002	
0000	0.000	0.001	_	0.000	0.002		0.001	0,011	1.2	Ų, 000	0.00
2378-TCDF	0.1	0.1	0.036	0.004	0.004	0.14	0.014	0.014	0.011	0.001	0.00
12378-PeCDF	0.05	0.05	0.012	0.001	0.001	0.11	0.006	0.006	0.0024	0.000	0.000
23478-PeCDF	0.5	0.5	0.013	0.007	0.007	0.087	0.044	0.044	0.0035	0.002	0.002
123678HxCDF	0.1	0.1	0.0047	0.000	0.000	0.033	0.003	0.003	0.0048	0.000	0.000
123789-HxCDF	0.1	0.1	0	0.000	0.000	0.037	0.004	0.004	0	0,000	0.000
123478-HxCDF	0.1	0.1	0.0073	0.001	0.001	0.16	0.016	0.016	0.0052	0.001	0.00
234678-HxCDF	0.1	0.1	0	0.000	0.000	0.021	0.002	0.002	. 0	0.000	0.000
1234678-HpCDF	0.01	0.01	0.015	0.000	0.000	0.13	0.001	0.001	0.021	0.000	0.000
1234789-HpCDF	0.01	0.01	0	0.000	0.000	0	0.000	0.000	0	0.000	0.000
OCDF	0.0001	0.001	0.079	0.000	0.000	0.22	0.000	0.000	0.14	0.000	0.000
Sum Toxic Equiv.				0.030	0.032		0.155	0.153		0.008	0.010
(in ng/L)						,					

to the Charles of the Colon Co

Notes: TEF 1997 = Toxic Equivalency Factor published by the World Health Organization in 1997
TEF 1989 = Toxic Equivalency Factor published by EPA in 1989
Bold numbers indicate sum of TEFs exceed residential DCC of 90 ng/Kg.

Table E-6BASF Riverview, Michigan Groundwater Samples
Relative Potency of Dioxins

Printed: 1-24-01

Source: Pace Laboratory

				SMW-20			SMW-10	
	Γ		-					
	TEF	TEF	Conc.	Toxic	Toxic	Conc.	Toxic	Toxic
Congener	199	1989	(ng/L)	Equiv. ('97)	Equiv. ('89)	(ng/L)	Fquiv. ('97)	Equiv. ('89)
2378-TCDD	1	1	,	0.000	0.000	0.072	0.072	0.072
12378-PeCDD	1	0.5	o	0.000	0.000	0.19	0.190	0.095
123678-HxCDD	0.1	0.1	1.7	0.170	0.170	1.4	0.140	0.140
123789-HxCDD	0.1	0.1	0.85	0.085	0.085	0.52	0.052	0.052
123478-HxCDD	0.1	0.1	0.56	0.056	0.056	0.16	0.016	0.016
1234678HpCDD	0.01	0.01	29	0.290	0.290	21	0.210	0.210
OCDD	0.0001	0.001	.150	0.015	0.150	. 84	0.008	0.084
2378-TCDF	0.1	0.1	1.7	0.170	0.170	0.33	0.033	0.033
12378-PeCDF	0.05	0.05	1.3	0.065	0.065	0.2	0.010	0.010
23478-PeCDF	0.5	0.5	1.1	0.550	0.550	0:21	0.105	0.105
123678HxCDF	0.1	0.1	0.64	0.064	0.064	0.1	0.010	0.010
123789-HxCDF	0.1	0.1	0	0.000	0.000	0.073	0.007	0.007
123478-HxCDF	0.1	0.1	2.8	0.280	0.280	0.34	0.034	0.034
234678-HxCDF	0.1	0.1	0	0.000	0.000	0.11	0.011	0.011
1234678-HpCDF	0.01	0.01	3.8	0.038	0.038	0.45	0.005	0.005
1234789-HpCDF	0.01	0.01	0	0.000	0.000	0	0.000	0.000
OCDF	0.0001	0.001	2.4	0.000	0.002	0.36	0.000	0.000
Sum Toxic Equiv. (in ng/L)				1.783	1.920	i	0.903	0.884

Data Quality Assessment Report BASF Corporation

Riverview Project – July/August 2000 Laboratory Project #: 1989, 1997, J001, J002, J007, J008, J011, J021, J030, J035, J043, J053, J062, J069 Assessment Report Date: January 30, 2001

I. INTRODUCTION

A total of 78 groundwater samples, 51 soil samples, 4 fill samples, 15 concrete samples, and 10 aqueous trip blanks were submitted to Shrader Laboratories Inc., Detroit, Michigan (Shrader) for the analytical parameters listed in Table F-1. Samples were collected from July 26 through August 31, 2000, and were received at the laboratory from July 27 through August 31, 2000. A complete list of samples appears in Table F-3 in Section III of this report.

Table F-1: Sample ID Summary

Laboratory	Number of	图 2000 A 1000 A 100		Req	uested	Analy	ies(2)	
Project Number	Samples(1)	Matrix :	VOC	SV	PCB	Mets	Wet	Dioxin
I989	4	Fill		X	X	X	X	
1997	3	Soil	· X	X	X	X	X	
J001	6	Soil	X	X	X	X	Х	
J002	7	Soil	X	X	X	X	X	(3)
J007	2	Soil	X	X	X	X	X	
J008	22	Soil	X	X	X	X	X	(3)
J011	20	Water	X	X	X	X	X	
J021	4	Soil	X	X	X	X	X	
J030	21	Water	X	X	X	Х	X	
J035	15	Concrete			X	(4)		
J042	22	Water	X	X	X	X	X	
J053	5.7	Water	X	X	X	X	X	
J062	8	Water	X	X	X	X	X	
J069	7	Soil	X	X	X	X	X	

- (1) Sample count includes one or more aqueous Trip Blanks accompanying each group of water samples.
- (2) Definitions: VOC = Volatile Organic Compounds [SW846 Method 8260B]
 - SV = Semivolatile Organic Compounds [SW846 Method 8270C]
 - PCB = Polychlorinated Biphenyls [SW846 Method 8082]
 - Mets = Arsenic (As), Barium (Ba), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Selenium (Se), Sodium (Na), and Zinc (Zn) for soil and water samples, plus Calcium (Ca) and Magnesium (Mg) for waters only [SW846 Methods 6010B and 7470/71A]
 - Wet = Chloride [SM18 Method 4500Cl⁻ C], Total Cyanide [SW846 Methods 9010B/9014], Ammonia-Nitrogen [EPA Method 350.1], Sulfate [EPA Method 375.4], and pH [SW846 Method 9040B/9045C] for soil and water samples, plus Sulfide [EPA Method 376.2], Hardness [SM18 Method 2340B], and Chemical Oxygen Demand (COD) [SM18 Method 5220D] for waters only.

Dioxin = Polychlorinated Dibenzo-p-dioxins and Dibenzofurans [SW846 Method 8290]

- (3) Dioxin analyses were requested on samples J002007, J008005, J008007, J008023, and J008024 only.
- (4) Mercury was the only metal requested for the samples in Project Number J035.

The volatile, semivolatile, and PCB analyses requested were performed by Shrader. The metals and wet chemistry analyses were performed by Jones & Henry Laboratories of Northwood, Ohio, and the dioxin analyses by Pace Analytical Services, Inc., of Minneapolis, Minnesota. The data were submitted in summary format, with supporting QC documentation and selected raw data.

A standard data quality review was performed by URS Corporation (URS) for all analyses contained in these data packages. A standard review does not include reconstruction of the analytical data, but does include assessment of supporting quality control (QC) parameters and a review for compliance with the cited methods. This level of review is considered appropriate for identifying the nature and extent of contamination, but is inadequate to establish the legal defensibility of the data. The sections following discuss findings from the data review procedures performed for each quality control element.

II. DATA QUALITY REVIEW

Data quality review includes evaluation of the following Quality Control (QC) elements:

- Sample preservation and holding times for compliance with method requirements;
- Initial and continuing calibrations for instrument performance;
- Internal standard responses for instrument performance relative to the sample matrix;
- Laboratory method blanks and Trip Blanks for potential contamination;
- Surrogate spike recoveries for extraction/purging efficiency;
- Laboratory Control Samples for method accuracy independent of matrix;
- Matrix Spike/Matrix Spike Duplicates for analytical accuracy and precision relative to the sample matrix;
- Field duplicate results for precision of the entire sampling and analytical system;
- Additional miscellaneous findings or anomalies identified during the review; and
- Overall assessment of data quality.

A. GENERAL COMMENTS

Analyses by specific SW-846 methods were requested for this project. During the Data Assessment, two significant deviations from these methods were noted. These deviations concern the method used for the PCB analyses, and the manner in which detection limits were calculated and reported.

The PCB analyses were requested by SW-846 Method 8082, a gas chromatography (GC) method specifically developed for PCBs. The analyses were actually performed with a gas chromatograph/mass spectrometer (GC/MS) in selective ion monitoring mode, using a modification of SW-846 Method 8270C. Although not considered the method of choice for PCBs (and not recommended by the State of Michigan), Method 8270C is a valid method for PCB analysis. The laboratory's technique combined traditional multiple-peak pattern-recognition for Aroclor identification (similar to Method 8082), with quantitation using the responses of specific characteristic ion masses in relation to an internal standard (as in Method 8270C). Since the instrument performance checks, calibrations, and quantitations were performed as described in Method 8270C, the acceptance criteria of that method, rather than 8082, were used to evaluate the data.

The second significant deviation from SW-846 methodology was in the calculation and reporting of detection limits for the volatiles, semivolatiles, and PCBs. According to SW-846 Method 8000B, the lowest calibration standard of the initial calibration sequence establishes the quantitation limit for the analysis. Extrapolation of the calibration curve below the lowest standard is not permitted, as the responses of the target compounds are rarely linear at the low end of instrument sensitivity. Non-detected compounds should therefore be reported with the corresponding quantitation limit (sometimes referred to as the "reporting limit"), based on the lowest standard, and adjusted for variations in sample weight, volume, percent moisture, or dilution factor. The detection limits reported for the project samples, however, bear no relationship to the calibration level. Rather, the reported detection limit is calculated by the instrument for each individual compound in each separate sample, based on the background noise level and the presence of interferences. As such, the value reported represents the theoretical level of a detectable signal, not necessarily an achievable quantitation limit for a real-world matrix. Consequently, all non-detected results for the volatiles, semivolatiles, and PCBs have been qualified as estimated (UJ), and the limits reported may be significantly lower than actually achievable.

B. SAMPLE PRESERVATION/HOLDING TIMES

All analyses were reviewed for compliance with the required holding time criteria, which are defined in the respective analytical methods. Analyses performed only slightly beyond the required holding time (i.e., within two times the holding time) are qualified as estimated. For analyses performed significantly beyond the required holding time (i.e., greater than two times), positive results are qualified as estimated and non-detect results are rejected.

The analyses for the extractable organics (semivolatiles, PCBs, and dioxins) were performed within the prescribed holding times, with the exception of the semivolatiles for samples J030002, J030004, J042001, J042016, and J042017 (analysis beyond the 40th day after extraction), and the dioxins for samples J002007, J008005, and J008007 (extraction beyond the 30th day after collection). Since the analyses were performed within two times their respective holding times, the results are usable, but were qualified as estimated (J/UJ). In addition, four samples—J021001, J021002, J021003, and J021004—required re-extraction for semivolatiles due to matrix and/or instrument problems. The re-extractions were performed on the 62nd day after collection, significantly past the 14-day holding time. Positive results for these samples were qualified as estimated (J), and non-detects were rejected as unusable (R).

The volatiles fractions of the water samples were not preserved to a pH of 2 after collection, thereby shortening the holding time to 7 days (from 14 days for preserved samples). Virtually all of the water samples were analyzed for volatiles after 7 days, but within 14 days; consequently, the results were qualified as estimated (J/UJ), and may be biased low. One soil sample, J021002, required a reanalysis beyond the 14-day holding time for soils. The results reported for this sample were also qualified as estimated (U/UJ).

A number of the samples in Project Numbers J042, J053, and J062 were analyzed for cyanide after the 14-day holding time, but before the 28th day. These results were qualified as estimated (J/UJ).

C. INSTRUMENT PERFORMANCE CHECKS and CALIBRATIONS

Instrument performance checks of various types are performed periodically to verify proper instrument function. Initial and continuing calibrations are performed to establish or confirm the relationship between concentration and instrument response on a per analyte basis. The instrument performance and calibration criteria are defined in the respective analytical methods.

The GC/MS tuning checks all met the instrument manufacturer's tuning criteria for sensitivity and response. Two samples for semivolatiles and 29 samples for PCBs were analyzed greater than 12 hours after the preceding tuning check. As long as continuing calibration checks, surrogates, and internal standards demonstrated acceptable responses, the results for these samples were not rejected, but were qualified as estimated (J/UJ).

Initial calibration summaries and/or raw data were submitted for review for all parameters, with the exception of the dioxins. The calibrations for the volatiles, semivolatiles, and PCBs met the criteria defined in SW-846 Method 8000 for GC/MS analyses. The metals and wet chemistry calibrations also met the criteria defined in the respective methods.

A number of the volatile and semivolatile continuing calibration checks had percent differences (%Ds) from the initial calibration that exceeded the method criterion of 20%. None, however, exceeded 40%, consequently no qualifications were required. In addition, during the semivolatiles analyses on August 31, 2000, one of the two continuing checks was inadvertently omitted. Consequently, greater than 12 hours elapsed between continuing checks for the five compounds in that standard. Since the standard containing the remaining compounds (including the required Calibration Check Compounds) was analyzed within the 12-hour limit, and exhibited acceptable responses, no qualifications were necessary.

Some inconsistencies were noted in the retention time windows used to quantitate the continuing calibration compounds in the PCB analyses. Discussions with the laboratory indicated that the inconsistencies were unintentional, and due to analyst error. Since insufficient information was provided to determine whether consistent retention time windows were used for the quantitation of sample results, all positive PCB results for all samples were qualified as estimated (J).

According to the narrative provided by Pace Analytical, the closing continuing calibration check associated with the project samples exhibited poor responses for several internal standards. The lab indicated that the problem was confined to the continuing check, and did not affect the sample results. No qualifications were made.

D. BLANKS

Blanks evaluate the existence and magnitude of contamination resulting from field, shipping, or laboratory activities. In the event that an analyte is detected in a blank, contamination of an associated sample is demonstrated if the sample concentration is less than five times the blank concentration (ten times for common lab contaminants: acetone, methylene chloride, 2-butanone, and the phthalate esters). If the concentration in a sample falls within that range, it is attributed to probable contamination rather than actual presence in the environmental sample. The result is, therefore, qualified as non-detect (U) at either the reported concentration or the laboratory Reporting

Limit (RL), whichever is higher. If the sample concentration is above the 5x (or 10x) range, the amount attributable to contamination is negligible and the sample concentration is considered genuine. No qualification is required.

All reported trip blanks and method blanks were free of contamination, with two exceptions. The first was a high concentration (173 mg/Kg) of bis(2-ethylhexyl)phthalate in the semivolatiles method blank extracted on 08/21/00 with samples J00808 through J00822. Most of the samples were non-detect for this compound; however, samples J00810 and J00816 had positive detections less than 10 times the blank. Consequently, the result for sample J00810 was changed from 0.697 mg/Kg to 0.697 U mg/Kg, and that for sample J00816 was changed from 612 mg/Kg to 612 U mg/Kg (non-detects at the values reported).

The second instance of blank contamination was in the dioxin method blank extracted on September 6, 2000. Octachlorodibenzo-p-dioxin (OCDD) was found in the blank at a concentration of 2.4 J ng/Kg. Only one sample, J002007, contained this analyte at a concentration within 5 times the blank, at 9.60 ng/Kg. This result was changed to 9.60 U ng/Kg (non-detect at the value reported). None of the other samples were affected.

E. LABORATORY CONTROL SAMPLES

A Laboratory Control Sample (LCS) is a method blank spiked with known concentrations of all or a representative subset of the analytes of interest. The LCS is subjected to the entire preparation and analytical procedure to evaluate method performance, particularly when the matrix spikes exhibit a matrix effect.

The LCS results for metals, the wet chemistry parameters, and dioxins were all within QC acceptance limits. LCSs were not included with most of the volatile, semivolatile, and PCB batches. It is the laboratory's practice to analyze LCSs only when recovery problems are noted in the matrix spikes. In the two LCSs that were performed for semivolatiles, all recoveries were within limits except for pentachlorophenol in the August 3, 2000 LCS. The pentachlorophenol results in associated samples (Project Numbers I997 and J001) were qualified as estimated (J/UJ) and may be biased low.

F. INTERNAL STANDARDS

Internal standards are used for GC/MS analyses to monitor the stability of the instrument response for every run, and for quantitation of analyte concentrations. Internal standards are compounds added in the same amount to all samples, calibration standards, method blanks, matrix spikes, and LCSs. Analyte quantitation is accomplished by comparing the instrument responses from the target compounds with the responses from the internal standards. This takes into account minor fluctuations in response due to the sample matrix or normal instrument variability.

Each internal standard response should be $\geq 50\%$, but $\leq 200\%$, of the instrument reference standard, and the retention time should not vary from that of the reference standard by more than 30 seconds. If internal standard responses were < 50%, but $\geq 25\%$ of the reference standard, associated data are qualified as estimated. Non-detect data associated with internal standards having a response < 25%

of the reference standard are rejected, and positive concentrations are qualified as estimated. Positive results associated with responses >200% are qualified as estimated (non-detects are not qualified). And finally, for internal standards with retention time (RT) shifts greater than 30 seconds, associated positive results are qualified as estimated, and associated non-detects are rejected (due to the possibility of false negatives).

For the most part, internal standard responses were within the stated criteria for volatiles and semivolatiles. The exceptions are noted here, and are qualified in accordance with the guidelines above (see Tables F-4 and F-5 in Section III for a list of internal standards and their associated target compounds):

Sample	Fraction	Exceedance
J008006	Volatiles	RT shift—IS1, 2, 3
J008019	Volatiles	Low response (>25%)—IS3
J011001	Volatiles	RT shift—IS1, 2, 3
J011019	Volatiles	Low response (>25%)—IS2
J030001	Volatiles	RT shift—IS1, 2, 3
J030003	Volatiles	RT shift—IS2, 3
J030007	Volatiles	RT shift—IS3
J030015	Semivolatiles	High response—IS5
J042020	Volatiles	RT shift—IS2, 3
J042021	Semivolatiles	High response—IS5
J053009	Volatiles	Low response (>25%)—IS 1, 2, 3
J053011	Volatiles	Low response (>25%)—IS3
J053012	Volatiles	Low response (>25%)—IS 1, 2, 3
)	RT shift—IS 1, 2, 3
J069001	Volatiles	RT shift—IS2, 3

Although the PCB analyses were performed by GC/MS with internal standards, no information regarding the responses or retention times were included in the submitted data packages. As a result, the stability of the instrument response from run to run could not be evaluated.

G. SURROGATE SPIKE RECOVERIES

Surrogates are chemicals not normally found in nature, but chemically behave in a similar fashion to the target analytes. Surrogate spikes are added to every environmental and QC sample, and are used to evaluate extraction and/or purging efficiencies for organic analyses. Surrogate recoveries are evaluated against QC acceptance limits. Recoveries above QC limits indicate a positive bias; therefore, associated positive concentrations are qualified as estimated (J). If recoveries are below QC limits, a negative bias is assumed and associated non-detect and positive concentrations are qualified as estimated (J/UJ). If recoveries are significantly low (i.e., below 10%), positive concentrations are estimated (J) and non-detect results are rejected (R).

Recoveries that were outside of QC acceptance limits are noted here, and were qualified or rejected in accordance with the guidelines above:

Sample	Fraction	Exceedance
I989004	Acid SVOCs	1 surrogate low
1997001	Acid SVOCs	1 surrogate low, 1 <10%
J001008	Acid SVOCs	1 surrogate low
J008017	Acid SVOCs	2 surrogates <10%
J008009	Volatiles	1 surrogate low
J011002	Acid SVOCs	3 surrogates <10%
J011003	Acid SVOCs	3 surrogates <10%
"	PCBs	1 surrogate low
J011004	PCBs	1 surrogate low
J011009	Volatiles	1 surrogate high
J011012	Volatiles	1 surrogate low
J011013	Volatiles	1 surrogate low
J021001	Volatiles	3 surrogates low
99	Acid SVOCs	2 surrogates <10%
J021002	Volatiles	1 surrogate low
J021003	Volatiles	2 surrogates low
J021004	Volatiles	2 surrogates low
J030010	PCBs	1 surrogate low
J030014	Acid SVOCs	1 surrogate low
J030015	Base/Neutral SVOCs	1 surrogate low
J030019	Acid SVOCs	3 surrogates <10%
J035009	PCBs	1 surrogate low
J035010	PCBs	1 surrogate low
J042005	Volatiles	1 surrogate low
J042006	Volatiles	1 surrogate low
J042007	Volatiles	1 surrogate <10%
J042008	Volatiles	1 surrogate low
"	All SVOCs	6 surrogates high
J042013	Base/Neutral SVOCs	2 surrogates high
J042016	Volatiles	1 surrogate high
J042019	Acid SVOCs	1 surrogate high
J053003	Volatiles	1 surrogate low
, ·	Base/Neutral SVOCs	1 surrogate low
J053004	Volatiles	1 surrogate low
J053009	Volatiles	1 surrogate low
J053016	Base/Neutral SVOCs	1 surrogate low
J053018	Volatiles	1 surrogate low
J069002	PCBs	1 surrogate low
J069003	Acid SVOCs	3 surrogates <10%
**	Base/Neutral SVOCs	1 surrogate low
J069004	Volatiles	1 surrogate low

H. MATRIX SPIKE/MATRIX SPIKE DUPLICATE ANALYSES

Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples are actual environmental samples spiked with known concentrations of target analytes and are performed to evaluate potential matrix effects on the analytical data. Samples submitted for MS/MSD analyses are assigned in the field and are performed for approximately one out of every 20 samples, per matrix, per analytical parameter. For some inorganic analytes (e.g. COD and sulfide), matrix duplicates were performed in lieu of MS/MSDs.

Recoveries and relative percent differences (RPDs) are evaluated against QC acceptance limits. A recovery above QC limits indicates a positive bias; therefore, positive concentrations for that analyte are qualified as estimated (J). If a recovery is below QC limits, a negative bias is assumed, and both non-detect and positive results for that analyte are qualified as estimated (J/UJ). If a recovery is significantly low (i.e., below 10%), positive concentrations are estimated (J) and non-detect results are rejected (R). An RPD above 30% indicates poor precision; consequently positive results are qualified as estimated (J). Due to the absence of LCSs in most organic analytical batches, any qualifications based on the MS/MSD results were applied to all samples in the same Laboratory Project as the spiked sample.

For the most part, MS/MSD recoveries and RPDs were within QC acceptance limits. The exceptions are noted here, and associated samples are qualified in accordance with the guidelines above:

Sample	Analyte	Exceedance	Affected Samples
1989003	Pentachlorophenol	Recoveries low	All 1089
J008013	Pentachlorophenol	Recoveries <10%	All J008
J030016	Benzene	Recoveries high	All J030
J062005	p-Chloro-m-phenol	Recovery low, RPD high	All J062
"	Phenol	Recovery low	All J062
J069005	Pentachlorophenol	Recoveries low	All J069
"	Aroclor 1254	Recoveries/RPD high	All J069

I. FIELD DUPLICATE ANALYSES

Field duplicate results are used to evaluate the precision of the sampling and analytical system as a whole. When concentrations for both duplicate samples are greater than five times the quantitation limits, satisfactory precision is indicated by an RPD value less than or equal to 50%. If the concentrations are less than five times the quantitation limit, satisfactory precision is indicated if the field duplicate results agree within 2.5 times the quantitation limit.

Due to unsatisfactory precision (as defined above), the following positive results were qualified as estimated:

<u>Duplicate Pair</u> J001006 / J001007	Analytes Qualified All VOCs except benzene and ethylbenzene All SVOCs except naphthalene Aroclor 1254 Cyanide, chromium, lead, mercury, zinc
J008003 / J008004	Isophorone Cyanide and sulfide
J008018 / J008019	Acetone, methylene chloride, vinyl chloride Aroclor 1260 Benzo[a]pyrene, fluorene, fluoranthene, phenanthrene Ammonia, arsenic, cadmium, selenium
J042014 / J042015	Cyanide
J053005 / J053006	Zinc
J053011 / J053012	Acetone, ethylbenzene, xylenes (all) m,p-Cresol, o-cresol
J053016 / J053017	Acetone, tetrachloroethene, toluene Carbazole, m,p- and o-cresol
J062005 / J062006	COD, pH (the pH on J062006 appears to have been taken on an acid-preserved aliquot)
J069005 / J069006	All VOCs All SVOCs except acenaphthene and m,p-cresol Arsenic, mercury

J. MISCELLANEOUS FINDINGS

- 1. Sample I989002 could not be analyzed for chloride, ammonia, or sulfate, due to an insufficient amount of sample.
- 2. Chloride analyses were not requested for sample group J069.
- 3. No Chloride, COD, ammonia, sulfate, and pH analyses were not requested for sample J062008.
- 4. PCB, chloride, COD, cyanide, ammonia, sulfate, and pH analyses were not requested for sample J042020.

K. OVERALL DATA ASSESSMENT

With the exception of rejected data as noted in the findings reported above, acceptable levels of accuracy and precision were demonstrated, and the analytical data are considered acceptable with qualifications for their intended use. The rejected data are summarized in the following table:

Table F-2: Rejected Data Summary

Sample	Parameter	OC Finding
I997001	SVOCs	
199/001	SVOCS	All non-detected acid compounds were rejected due to a surrogate recovery <10%.
J008006	Volatiles	All non-detects were rejected due to
		retention time shifts >30 seconds for all three
	·	internal standards.
All J008 Samples	SVOCs	Non-detect results for pentachlorophenol were
·		rejected due to recoveries <10% in the associated
		matrix spikes
J008017	SVOCs	All non-detected acid compounds were rejected
T011001	X7 1 411	due to surrogate recoveries <10%.
J011001	Volatiles	All non-detects were rejected due to
		retention time shifts >30 seconds for all three
7011000		internal standards.
J011002	SVOCs	All non-detected acid compounds were rejected
J011003	SVOCs	due to surrogate recoveries <10%.
J011005	SVOCS	All non-detected acid compounds were rejected due to surrogate recoveries <10%.
J021001	SVOCs	Non-detects were rejected due to gross
3021001	3,000	exceedance of the holding time.
J021001	SVOCs	All non-detected acid compounds were rejected
		due to surrogate recoveries <10%.
J021002	SVOCs	Non-detects were rejected due to gross
		exceedance of the holding time.
J021003	SVOCs	Non-detects were rejected due to gross
		exceedance of the holding time.
J021004	SVOCs	Non-detects were rejected due to gross
		exceedance of the holding time.
J030001	Volatiles	All non-detects were rejected due to
		retention time shifts >30 seconds for all three
	·	internal standards.
J030003	Volatiles	Non-detects associated with IS2 and IS3
		were rejected due to retention time shifts >30
		seconds.
J030007	Volatiles	Non-detects associated with IS3 were
		rejected due to retention time shifts >30
		seconds.
J030019	SVOCs	All non-detected acid compounds were rejected
		due to surrogate recoveries <10%.

Table F-2: Rejected Data Summary

Sample	Parameter	QC/Finding .
J042007	Volatiles	All non-detected compounds were rejected due to a surrogate recovery <10%.
J042020	Volatiles	Non-detects associated with IS2 and IS3 were rejected due to retention time shifts >30 seconds.
J053012	Volatiles	All non-detects were rejected due to retention time shifts >30 seconds for all three internal standards.
J069001	Volatiles	Non-detects associated with IS2 and IS3 were rejected due to retention time shifts >30 seconds.
J069003	SVOCs	All non-detected acid compounds were rejected due to surrogate recoveries <10%.

III. ADDITIONAL TABLES

Table F-3: Sample ID Cross-reference

Laboratory.ID	Sample ID	QC Type	Matrix	Date Collected
1989001	SB-01 13.5-19.5'	A COLUMN TO THE COLUMN TO	Fill	7/26/00
1989002	SB-02 24.5-25.0'		Fill	7/26/00
1989003	SB-09 03.5-08.5'		Fill	7/26/00
1989004	SB-10 16.0-16.5'		Fill	7/26/00
1997001	DMW-09 02-04'		Soil	7/27/00
1997002	DMW-09 06-08'		Soil	7/27/00
1997003	DMW-09 10-12'		Soil	7/27/00
J001001	DMW-10 02-04'		Soil	7/31/00
J001002	DMW-10 08-10'		Soil	7/31/00
J001003	DMW-10 10-12'		Soil	7/31/00
J001006	DMW-11 04-06'		Soil	7/31/00
J001007	DMW-110 04-06'	FD	Soil	7/31/00
J001008	DMW-11 06-08'		Soil	7/31/00
J002001	DMW-13 04-06'		Soil	7/31/00
J002002	DMW-13 06-08'		Soil	7/31/00
J002003	DMW-13 10-12'		Soil	7/31/00
J002004	DMW-12 06-08'		Soil	8/1/00
J002005	DMW-12 10-12'		Soil	8/1/00
J002006	DMW-12 18-20'	-	Soil	8/1/00
J002007	DMW-12 04-06'	 	Soil	8/1/00
J007001	DMW-09 26-28'		Soil	8/2/00
J007002	DMW-10 24-26'		Soil	8/2/00
J008001	DMW-11 24-26'		Soil	8/3/00
J008002	DMW-13 26-28'		Soil	8/3/00
J008003	DMW-120 28-30'	FD	Soil	8/3/00
J008004	DMW-12 28-30'		Soil	8/3/00
J008005	IMW-13 04-06'		Soil	8/3/00
J008006	SMW-04 10-12'		Soil	8/4/00
J008007	SMW-04 04-06'		Soil	8/4/00
J008008	SMW-15 04-06'		Soil	8/7/00
J008009	SMW-14 06-08'		Soil	8/7/00
J008010	IMW-01 02-04'		Soil	8/7/00
J008011	IMW-01 06-08'		Soil	8/7/00
J008012	SMW-21 02-04'		Soil	8/7/00
J008013	SMW-22 04-06'		Soil	8/7/00
J008016	SMW-20 04-06'		Soil	8/7/00
J008017	IMW-06 02-04'		Soil	8/8/00
J008018	IMW-06 06-08'		Soil	8/8/00
J008019	IMW-060 06-08'	FD	Soil	8/8/00
J008020	SMW-23 04-06'		Soil	8/8/00
J008021	IMW-05 04-06'		Soil	8/8/00
J008022	IMW-05 02-04'		Soil	8/8/00
J008023	IMW-06 0-02'		Soil	8/8/00
J008024	IMW-05 0-02'		Soil	8/8/00

Table F-3: Sample ID Cross-reference

The same of the sa	Table 1-5. Sample ID Cross-reference					
Laboratory ID	Sample ID	QC Type	Marit	Date Collected		
J011001	SMW-08		Water	8/4/00		
J011002	SMW-07		Water	8/4/00		
J011003	SMW-04-99		Water	8/4/00		
J011004	SMW-05-99		Water	8/7/00		
J011005	SMW-06-99		Water	8/7/00		
J011006	SMW-08		Water	8/7/00		
J011007	MW-G		Water	8/7/00		
J011008	Trip Blank	TB	Water	8/7/00		
J011009	SB-02		Water	8/8/00		
J011010	SMW-02		Water	8/8/00		
J011011	SB-01		Water	8/8/00		
J011012	MW-D		Water	8/8/00		
J011013	MW-D0	FD	Water	8/8/00		
J011014	Trip Blank	TB	Water	8/8/00		
J011015	SB-03		Water	8/9/00		
J011016	DMW-02		Water	8/9/00		
J011017	MW-E		Water	8/9/00		
J011018	DMW-06		Water	8/9/00		
J011019	DMW-05		Water	8/9/00		
J011020	Trip Blank	TB	Water	8/9/00		
J021001	SMW-16 00-02'		Soil	8/9/00		
J021002	SMW-17 00-02'		Soil	8/9/00		
J021003	SMW-18 00-02'		Soil	8/9/00		
J021004	SMW-19 00-02'		Soil	8/9/00		
J030001	PZ-06		Water	8/10/00		
J030002	PZ-04		Water	8/10/00		
J030003	PZ-05		Water	8/10/00		
J030004	MW-B		Water	8/10/00		
J030005	MW-C		Water	8/10/00		
J030006	PZ-01		Water	8/10/00		
J030007	Trip Blank	TB	Water	8/10/00		
J030008	PZ-05		Water	8/11/00		
J030009	DMW-01		Water	8/11/00		
J030010	SMW-03		Water	8/14/00		
J030011	PZ-02		Water	8/11/00		
J030012	PZ-03		Water	8/11/00		
J030013	MW-A		Water	8/11/00		
J030014	DMW-04		Water	8/14/00		
J030015	MW-K		Water	8/14/00		
J030017	Trip Blank	TB	Water	8/14/00		
J030018	SMW-01		Water	8/15/00		
J030019	DMW-03		Water	8/15/00		
J030020	MW-H		Water	8/15/00		
J030021	MW-I		Water	8/15/00		
J030022	Trip Blank	TB	Water	8/15/00		
J035001	RR-1 Top		Concrete	8/14/00		

Table F-3: Sample ID Cross-reference

	Sample ID	QC Type		Date
LAUGIALUIY	Sample ID	QC 1 y De		Collected -
J053011	SMW-26		Water	8/23/00
J053012	SMW-260	FD	Water	8/23/00
J053013	SMW-27		Water	8/23/00
J053014	SMW-24		Water	8/23/00
J053015	SMW-25		Water	8/23/00
J053016	SMW-040	FD	Water	8/23/00
J053017	SMW-04		Water	8/23/00
J053018	SMW-13		Water	8/23/00
J053019	DMW-10		Water	8/23/00
J053020	Trip Blank	TB	Water	8/23/00
J062001	DMW-11	-	Water	8/24/00
J062002	DMW-13		Water	8/24/00
J062003	BMW-01		Water	8/25/00
J062004	Trip Blank	TB	Water	8/25/00
J062005	DMW-09		Water	8/28/00
J062006	DMW-090	FD	Water	8/28/00
J062007	Trip Blank	TB	Water	8/29/00
J062008	DMW-12		Water	8/29/00
J069001	TP-5 Comp		Soil	8/30/00
J069002	TP-2 Comp		Soil	8/30/00
J069003	TP-6 Comp		Soil	8/31/00
J069004	TP-4 Comp	<u> </u>	Soil	8/31/00
J069005	TP-3 Comp		Soil	8/31/00
J069006	TP-30 Comp	FD	Soil	8/31/00
J069007	TP-1 Comp		Soil	8/31/00

FD = Field Duplicate TB = Trip Blank

Table F- 4: Volatile Internal Standards

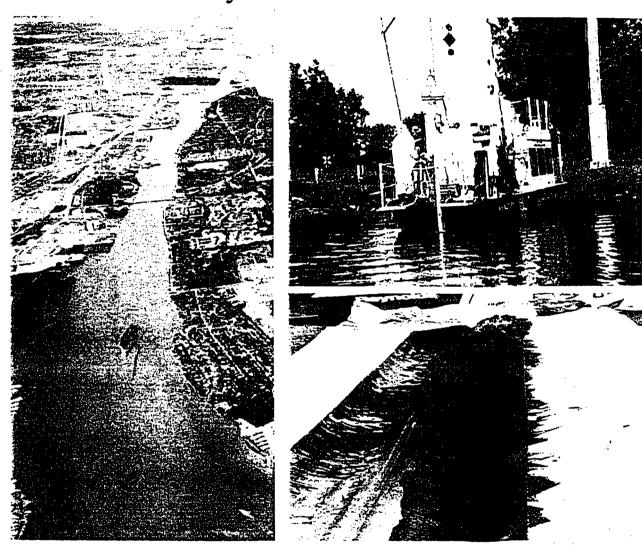

IS-1 Fluorobenzene	IS-22 Chlorobenzene-d5	IS-351-4 Dichlorobenzene-d4
Acetone	Chlorobenzene	1,2-Dichlorobenzene
Benzene	Ethylbenzene	1,4-Dichlorobenzene
1,2-Dichloroethane	Styrene	
1,1-Dichloroethene	Tetrachloroethene	
1,2-Dichloropropane	Toluene	
Methylene Chloride	m,p-Xylenes	
2-Butanone (MEK)	o-Xylene	
Trichloroethene		` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
Vinyl Chloride		

Table F- 5: Semivolatile Internal Standards

IS-1 Dichlorobenzene-d4	IS-2 Naphthalene-d8	IS-3; Acenaphthene-d10
2-Chlorophenol	p-Chloro-m-cresol	2,4,6-Trichlorophenol
o-Cresol	2,4-Dichlorophenol	Acenaphthene
m,p-Cresols	2,4-Dimethylphenol	Carbazole
Phenol	Hexachlorobutadiene	Dibenzofuran
Aniline	Isophorone	Fluorene
Hexachloroethane	Naphthalene	1,2,4,5-Tetrachlorobenzene
·	1,2,4-Trichlorobenzene	
IS-4 Phenanthrene-d10	IS-5 Chrysene-d12	IS-6 Perylene-d12
Pentachlorophenol	bis(2-Ethylhexyl)phthalate	Benzo[a]pyrene
Di-n-butylphthalate		
Fluoranthene		
Phenanthrene		·

	х у	Z @@Hg	Core	ID	Top De	del	
	- 1	X .	2	1/4			
	52 1	<i>1</i>			.,	/	
	734422.46	184978.103	0.15	13	00fs03-00-30	-3.0226	
	734422.46	184978.103	0.6	13	00fs03-30-90	-3.0226	
	734422.46	184978.103	1.2	2.4	00fs03-90-150	-3.0226	
	734422.46 734459.408	184978.103	1.766		00fs03-150-203	-3.0226	
	734459.408	185021.76 185021.76	0.15 0.6	1.9 2.4	00fs02-00-30 00fs02-30-90	-4.9784	
		185021.76	1.01	1.5	00fs02-30-30 00fs02-90-112	-4.9784 -4.9784	
		184918.402	0.15		00fs04-00-30	-7.9756	
	734409.333	184918.402		1.3	00fs04-30-81	-7.9756	
	734349.567	184848.973	0.15	0	00fs05-try1 -5.3		
	734344.407	184850.835	0.15	0.	00fs05_try2 -3.6		
	734347.11	184832.039	0.15	0.06	00fs05-00-30	-6.7056	
	734347.11	184832.039	0.45	0	00fs05-30-61	-6.7056	
	734136.366		0.15	24	00rv12-00-30	-3.6576	
	734136.366	184457.885	0.6	19	00rv12-30-90	-3.6576	
		184457.885		6.8	00rv12-90-154	-3,6576	
	734165.738 734165.738	184513.876		1.3	00rv11-00-30	-2.5146	
	734165.738	184513.876 184513.876	0.6	4.1	00rv11-30-90 00rv11-90-150	-2.5146	
		184513.876	1.2 2.18	4.3 25	00rv11-30-130 00rv11-150-287	-2.5146 -2.5146	
		185043.031	0.15	8.8	00fs01-00-30	-0.9398	
		185043.031	0.6	16	00fs01-30-90	~0.9398	
	734458.687	185043.031	1.2	9.6	00fs01-90-150	-0.9398	·
	734458.687	185043.031	2.09	1.9	00fs01-150-266	-0.9398	
	734273.346	184659.364	0.15	0	00rv07 -5.7	404	
	734238.909	184635.051	0.15	3.5	00rv08-00-30	-1.3462	r
		184635.051	0.6	1.8	00rv08-30-90	-1.3462	
	734238.909	184635.051	1.2	35	00rv08-90-150	-1.3462	
	734238.909	184635.051	2.07	3.4	00rv08-150-264	-1.3462	
		184082.535	0.15	1	00mc18-00-30	-1.905	
		184082.535	0.6	3.5	00mc18-30-90	-1.905	
	734010.492		1.2 1.8	2.8 7.6	00mc18-90-150 00mc18-150-210	-1.905 -1.905	
	734010.492	184082.535	2.42	11	00mc18-210-274	-1.905	
			0.15		00mc18-210-274	-1.0414	
	734023.725	184143.35	0.6	11.6	00mc17-30-90	-1.0414	
	734023.725		1.2	0.77	00mc17-90-150	-1.0414	
-	734023.725	184143.35	1.8	1.5	00mc17-150-210	-1.0414	
	734023.725	184143.35	2.46	2.6	00mc17-210-281	-1.0414	•
	734046.008	184180.954	0.15	4.3	00mc16-00-30	-4.953	
	734046.008	184180.954	0.6	18	00mc16-30-90	-4.953	1
•	734046.008	184180.954	1.2	10.6	00mc16-90-150	-4.953	į
	734046.008	184180.954	1.8	6.8	00mc16-150-210	-4.953	
	734046.008	184180.954	2.33	6.2	00mc16-210-256	-4.953	
	734057.477	184253.19	0.15	6.3	00mc15-00-30	-7.0104	
	734057.477 734057.477	184253.19	0.6	6.6	00mc15-30-90	-7.0104	
	734057.477	184253.19 184367.736	1.01 0.15	0.38	00mc15-90-111 00mc14-00-30	-7.0104	
	734088.038	184367.736	0.15	3.7 4.2	00mc14-00-30 00mc14-30-90	-2.7432 -2.7432	
	734088.038	184367.736	1.12	0	00mc14-30-90	-2.7432 -2.7432	
	734056.637	184387.969	0.15	2.6	00mc14-90-134	-1.9304	
	734056.637	184387.969	0.66	4.1	00mc13-30-101	-1.9304	•
•				. =		·	
		-					
•							

Results of the Trenton Channel Project Sediment Surveys 1993-1996

July 1997

Arthur Ostaszewski Michigan Department of Environmental Quality Surface Water Quality Division U.S. EPA-GLNPO Grant # GL-995960-02-0

Table of Contents

Abstract

Introduction

Methods

Results

Discussion

Acknowledgments

Literature Cited

- Table A. Parameters and Guideline Levels Used to Evaluate Trenton Channel Project Sediment Results.
- Table B. Classification of Contaminated Sediment Sites as applied to the Trenton Channel Project Sediment Survey Results (1993-1996).
- Graph B. Classification and Distribution of Trenton Channel Project Sediment Results.
- Graph B(a). Classification and Distribution of Trenton Channel Project Sediment Results (annotated).
- Table C. Known Contaminated Sites identified in the Trenton Channel with Comparisons to 1993-1996 Sampling Results.
- Figure 1. Trenton Channel Project: Sediment Survey Chronology.

Figure 2. Map of Sample Areas.

Appendix A. Mass Spectrometry-Library Search Interpretations.

Appendix B. Sediment Survey Results-Data Tables

Metals, PCBs, PAHs, Oil and Grease, Grain Size,

Acid Volitile Sulfides, TOC, Density, Lat-Long,

Classification A. Upstream to Downstream

Classification B. Most Contaminated to Least Contaminated

ABSTRACT

The Trenton Channel of the Detroit River has been identified in several studies as containing contaminated sediments that impair beneficial uses. From 1993 to 1996, the MDEQ and USEPA surveyed depositional areas of the Trenton Channel to determine horizontal and vertical distribution of contaminated sediments. Using the Rossfelder coring unit of the USEPA-GLNPO R/V Mudpuppy along with ponar and eckman dredges, 84 stations were sampled. Results show that 6 major areas harbor the bulk of contamination, an estimated 483,000 cubic yards. They are: Allied Fuel Oil Slip, Nicholson South Slip, Firestone Steel Area, Black Lagoon, Elizabeth Park North Canal, and Elizabeth Park South Canal-Inlet. Mercury, PCBs, PAHs, Heavy Metals, and Oil and Grease are the primary parameters of concern. Contamination is concentrated on the Michigan mainland side in depositional pockets primarily of fine sand and silt.

METHODS

Using the USEPA-GLNPO Research Vessel (R/V) Mudpuppy, 4 inch diameter sediment cores were taken using a Rossfelder Vibracoring Unit in depositional areas encompassing the entire portion of the Trenton Channel over a 3 year period, 1993-1996, (Figure 2, Map of Sample Areas). Cores were taken to refusal. MDEQ-SWQD also collected surfical petite ponar and eckman sediment samples in certain locations inaccessible to the 32' R/V Mudpuppy. Data from Michigan State University (Besser et. al., 1996) was also used. Depositional zones were determined by reviewing historical outfall and sampling records, and presurvey reconnaissance of soft sediments (fine sand and silt) using a petite ponar dredge and/or 12 ft. PVC poles.

To address trends in surficial depositing sediments, Michigan State University (Besser et.al., 1996), collected ponar sediment samples in a dredged portion of the Channel that included clean and contaminated reference sites. In 1994 and 1996, ponar and eckman dredge samples were taken at the same reference depositional sites by MDEQ to better characterize the trend contaminant levels in undisturbed surficial sediments.

The primary suite of parameters measured for all surveys included heavy metals, PCBs and PAHs. Depending on specific survey objectives (Figure 1. Chronology), analysis for TOC, Oil and Grease, Grain-size, Acid Volatile Sulfides-Simultaneously Extractable Metals, Density, Pesticides, Base Neutral Scans, and Mass Spec-Library Searches (Appendix A. Mass Spec-Library Search Interpretations) were also conducted. All lab analyses used standard USEPA methodology or ASTM protocol as identified in the Trenton Channel Sediment Assessment Quality Assurance Project Plan, (Ostaszewski and Benzie, 1993).

For comparing the results to established levels of high contamination to aquatic life, the Effects Range Median Guidelines (ERM - Long and Morgan, 1990), as outlined in the USEPA Sediment Classification Methods Compendium (USEPA, 1992) were used. For those parameters without established ERMs, results were compared to the Ontario Ministry of the Environments Severe Effect Levels (SEL - Persaud, 1993). For the bioaccumulative parameters PCBs and Mercury, we compared results to the quantification limit (QL) as outlined by the MDEQ-Environmental Response Division Target Method Detection Limit using respective EPA Analytical methods, (Table A. Parameters and Guidelines Used to Evaluate Trenton Channel Project Sediment Results). The magnitude of exceedances for bioaccumulatives (QL) and toxics (ERM/SEL) were summed and used in identifying those sites which were the most contaminated (Table B. Classification of Contaminated Sediment Sites as applied to the Trenton Channel Project Sediment Survey Results (1993-1996)), (Graph B (a). Classification and Distribution of Trenton Channel Project Sediment Results (annotated)). Dredging volumes for "extremely" contaminated areas where estimated taking the surface area of the depositional site, and depth of QL and/or ERM/SEL exceedances. Where QL and ERM/SELs were still exceeded at bottom intervals, professional judgment was used to determine depth of contamination (rate of decline). The volumes are based on in place measurements, and do not take into account percent solids.

21

The pattern of contamination in the upstream portion of the upper Trenton Channel appears to be highest at the most upstream stations and decreases downstream. The contamination is also much greater for those stations along the Michigan shoreline. Allied and Nicholson Slips have the highest levels of most contaminants. Core samples at these two freighter slips show the vertical distribution of all contaminants to be variable with no discernible pattern. Contamination was present down to the bottom of the core, 218 cm.

Downstream at the Stenson Site, levels of Cd, Cr, Fe, Mn, Ni, Zn, PCBs and Oil and Grease are highest on the surface, and decrease down through the sediments. This is very clear with PCBs at the Stenson site. PCB levels on the surface (0-30cm) were at 7.2 ppm and decrease to 7.0 ppm (30-91cm), 5.6 ppm (91-152cm), 1.3 ppm (152-213cm) and 1.5 ppm (213-224cm). PCBs were also lower with depth at the Nicholson Slip Site.

Levels of Cu, Hg and PAHs showed an increase with depth to 213cm at the Stenson site, then decreased at the 213-224 cm interval. Just offshore at the three Mud Island CDF sample sites, contaminants were much lower. ERM/SEL guidelines were exceeded only for organic contaminants. The highest level around the CDF for PCBs was 1.6 ppm. Oil and Grease (2760 ppm) and PAHs (48 ppm) were highest for the west side of the island (nearest the mainland) than on the east side (Oil and Grease=1200ppm, PAHs=18.6 ppm).

Upper Trenton-Grassy Island to Pt. Hennepin Figure 6. Upper Trenton Channel Grassy Island to Pt. Hennepin

There are few depositional zones in the area downstream from Ecorse Creek to the Grosse Ile Toll Bridge. Areas sampled in this stretch included five samples around Grassy Island (another former CDF), off the southern tip of BASF Northworks, in a boat slip of the Wyandotte Yacht Club, in the shallow region between Grassy Island and Pt. Hennepin, and off the west side of Fighting Island (also a former CDF).

Heavy Metals exceeded QL and ERM/SEL levels only at the BASF-Lower and/or Wyandotte Yacht Club sites. The highest values are presented below:

BASF-Lower/Wyandotte Yacht Club Maximum Values

Metals (ppm-dw)

Hg=1.5 Ni=67 Pb=150 Zn=330

Organics (ppm-dw)

PCBs=3.3 PAHs=88.7 Oil and Grease=11,000

Figure 7. PCBs in the Upper Trenton Channel

Figure 8. Hg in the Upper Trenton Channel

Levels of Cd, Cr, Cu, Fe and Mn did not exceed ERM/SEL levels as did sites upstream. Heavy metals were relatively low for the sites around Grassy Island and the one site off Fighting Island. PCBs continued to be elevated above QL levels, are greater at nearshore stations, and increase with depth,. At the BASF-Lower site, PCB concentrations ranged from 1.93 ppm near the surface (0-30 cm), 1.3 (30-91cm), 0.42 ppm (91-152cm), and non-detected at lower depths (152-213cm) and (213-218cm) in the core.

Immediately downstream of Firestone Steel is the Federal Marine Terminal (BASF Landfill) Site. Sediments off this site had levels similar to the Firestone Steel site, with elevated levels of Cd (40 ppm), Cr (500 ppm), Fe (45,000 ppm), Hg (9.9 ppm), Ni (210 ppm), Pb (352 ppm), Zn (846 ppm), PCBs (11.2 ppm), and Oil and Grease (41,200 ppm).

Federal Marine Terminal (a.k.a. Monguagon Creek-Upstream) Site Maximums Metals (ppm-dw)

Cd=40 Cr=500 Fe=45,000 Hg=9.9 Ni=210 Pb=352 Zn=846

Organics (ppm-dw)

PCBs=11.2 Oil and Grease=41,200

Figure 14. Federal Marine Terminal / Monguagon Creek Area Cd levels Figure 15. Federal Marine Terminal / Monguagon Creek Area Hg levels

With the exception of cadmium, the highest levels of contaminants were found below the surface at the Federal Marine Terminal site, though surfical sediments still exceeded QL and ERM/SEL levels. Cadmium at this site was the highest of the survey (40 ppm) and located in the surface core interval (0-30cm).

Middle Trenton Channel - Monguagon Creek/Gross Ile Toll Bridge to Elizabeth Park-North Figure 16. Middle Trenton Channel: Monguagon Creek to Elizabeth Park North Canal

There are 2 sediment depositional areas in the Middle Trenton Channel. Immediately downstream of the Grosse Ile Toll Bridge at the mouth of Monguagon Creek, sediments showed similar patterns of contamination as the Federal Marine Terminal Site, with QL and ERM/SEL levels exceeded for Cd (30 ppm), Cr (456 ppm), Fe (57,000), Hg, (3.9 ppm), Ni (251 ppm), Pb (424 ppm), Zn (1200 ppm), and PCBs (12.3 ppm). The mouth of Monguagon Creek showed high levels of PAHs (218 ppm) and Oil and Grease (9000 ppm).

Monguagon Creek Area Maximums

Metals (ppm-dw)

Cd=30 Cr=456 Fe=57,000 Hg=3.9 Ni=251 Pb=424 Zn=1200

Organics (ppm-dw)

PCBs=12.3 PAHs=218 Oil and Grease=9000

Figure 17. Pb in the Federal Marine Terminal / Monguagon Creek Area. Figure 18. Zn in the Federal Marine Terminal / Monguagon Creek Area

One small depositional pocket along the Grosse Ile shoreline, downstream and across from Monguagon Creek, did not exceed any ERM/SEL levels for heavy metals. Only PCBs (0.6 ppm) exceeded QL levels.

Lower Trenton Channel: Elizabeth Park North to Celeron Island Figure 23. Lower Trenton Channel: Elizabeth Park North Canal to Celeron Island

Downstream of the Trenton Towers, homes, marinas, and boat launches dot the mainland shoreline until the beginning of Elizabeth Park. Elizabeth Park is a 500 acre municipal park administered by the Wayne County Parks Department. It is actually an island, with a canal running the length of it. At the north end of the park a depositional zone known as Elizabeth Park-North Canal is located. Elizabeth Park-North Canal is bound by a Mobil Oil Terminal to the north, and the park itself on the South. The Trenton Channel flows to the east, and the canal constricts to pass around the island on the west.

Just upstream of the Mobil Oil Terminal, sediments were sampled in a small cove. Only Zn (683 ppm) exceeded ERM levels. No other metals or organics exceeded QL or ERM/ SEL levels. In Elizabeth Park-North Canal, Cd (15 ppm), Cr (270 ppm), Fe (48700 ppm), Hg (7.4 ppm), Ni (100 ppm), Pb (279 ppm), and Zn (842 ppm) exceeded ERM/SEL levels. Organics also exceed QL and ERM/SEL levels for PCBs (10.3 ppm), PAHs (57 ppm), and Oil and Grease (26,200 ppm).

Elizabeth Park-North Canal (EPNC) Maximums

Metals (ppm-dw)

Cd=15 Cr=270 Fe=48,700 Hg=7.4 Ni=100 Pb=279 Zn=842

Organics (ppm-dw)

PCBs=10.3 PAHs=57 Oil and Grease=26,200

Figure 24. EPNC Hg levels

Figure 25. EPNC PCB levels Figure 26. EPNC PAH levels

With the exception of PAHs, levels of contamination were highest on the surface. Other contaminants decreased with depth down to 330 cm. At the eastern end of the Elizabeth Park-North Canal depositional zone, contaminants exceeded ERM levels for only Pb (129 ppm) and Zn (795 ppm), with no exceedances for organics.

Continuing along the canal, there are 5 small public bridges which cross its upper half. These bridges attach the park to the mainland. Surficial sediments were collected behind each bridge. Exceedances of QL and ERM/SEL levels are outlined as follows:

	•	to Downs ERM/SEL	stream) (ppm d.w.)					
EPC-I		•	٠			Pb=129	Zn=795	٠.
EPC-2 n	o exceeda	ances		Hg=1.7		Pb=137	Zn=750	•
EPC-4		Cr=146	Fe=43,000		Ni=75	Pb=189	Zn=870	PCBs=5.5
EPC-5	Cd=9.9		Fe=43,000			Pb=187	Zn=1020	PCBs=0.8

Downstream of EPC-2, there is an increase in contamination in the sediments. PCBs are found in the canal only below the area where dredge spoils from the Elizabeth Park Marina excavation were land deposited (EPC-4, Bridge 4).

Horizontally, contaminant distribution in Black Lagoon is bound on the north, west and south by the shoreline. To the east of Black Lagoon, a shoal runs the length of the depositional zone with the effect of creating a quasi-breakwall. Levels of contamination along the shoal did not exceed any QL or ERM/SEL for either metals or organics. The shoreline and the shoal effectively bound the contaminated area of Black Lagoon.

Vertically, contamination varied within Black Lagoon. Sample sites located deeper in the lagoon generally had the greatest level of contaminants buried at depths from 30 to 210 cm. Samples in the south region had higher contamination on the surface. Below 210cm, contaminant levels did not exceed QL or ERM/SEL levels except for Hg (1.4 ppm) and Oil and Grease (2970 ppm). The estimated volume of contaminated sediments in Black Lagoon is 20,000 cu. yards.

Downstream of Black Lagoon, the next major depositional area is Elizabeth Park North Canal. Elizabeth Park North Canal is a contaminated depositional zone bound by the shoreline to the north, east and south. Deposition is bound to the east by the flow velocity and scour of the Trenton Channel. Contamination was primarily greatest on the surface at this site, though extended below 330 cm. Surficial samples from 1996 were generally less contaminated than surficial core samples collected in 1993 and 1994 at Elizabeth Park North Canal. Highest PAHs levels (57 ppm) were found buried in cores.

At Elizabeth Park Marina, 3 years of surficial sediment sampling show depositional rates in the lower Trenton to be on the order 1-3 cm/yr. (Kreis, 1996). Surficial contaminant levels have declined but still exceeded QL and ERM/SEL levels for Fe, Hg, Ni. Pb, and Zn in the Marina.

Below Elizabeth Park Marina and the Grosse Ile "Free" Bridge, the Trenton Channel begins to widen and velocities decrease. Several islands dot this area as it opens up to Lake Erie. Wind and waves play a predominant role in moving the sediments. Sand predominates in this region in contrast to silt in upstream sheltered areas. The Lower Trenton is a dynamic area with waves reaching much higher peak heights than upstream. It is also more prevalent to partial reverse flow seiche effects from Lake Erie that happen with sustained east winds (Quinn, 1976).

At Celeron Island, Pb was found highest on the surface. Also, Hg and PAHs were found only on the surface interval of sediment cores and not detected below the surface. Resuspension of upstream contaminants are one of the mechanisms of how contaminants relocate to the Western Basin of Lake Erie (Schloesser, 1995).

Conclusions-

In two separate prioritization rankings of contaminated sediment sites in the Trenton Channel and Detroit River, the Firestone/Monguagon/McLouth area, along with Black Lagoon and Elizabeth Park North Canal ranked "Severely Contaminated" (Kreis, 1989) and "Severely Contaminated and Impacted" (Farara and Burt, 1993). These areas had exhibited degraded bethos, high toxicity, and exceed highly polluted sediment guidelines. These and other previous sediment sites studied compare well to Trenton Channel Project sediment results. (Table C. Known contaminated sites identified in the Trenton Channel with Comparisons to 1993-1996 Sampling Results).

The results of the Trenton Channel Project sediments sampling 1993-1996 has led to the conclusion that six major depositional areas are extremely contaminated in the Trenton Channel. Several minor areas are also extremely contaminated. Due to current velocity and navigational channel morphology, these depositional zones are horizontally defined in the Trenton Channel. Core sampling and/or hydroacoustic profiling (Caulfield, 1995) has determined the depth of contamination in these zones.

DISCUSSION

As identified in the 1985 Upper Great Lakes Connecting Channel Studies (U.S. EPA, 1988), sediment contamination in the Trenton continues to show a distinct gradient across the channel. Contamination is primarily present only along the Michigan mainland shore where depositional areas exist. The Allied Fuel Oil Slip and Nicholson South Slip mark the beginning of sediment contamination in the Trenton Channel. Levels in these two areas are much higher than those in immediate depositional zones downstream. Organic contaminants PCBs and Oil and Grease show a distinct decreasing trend of contamination from upstream (Allied/Nicholson) down to Wyandotte Yacht Club (3.5 miles).

Downstream of the Ecorse Creek mouth and out from shore lies the closed CDF (now a National Wildlife Refuge), Grassy Island. The contaminants Hg, PAHs and O&G are elevated at the south end of Grassy Island compared to north and west island sites. The closed CDF is currently the subject of study, (Manny, 1997).

There is no major depositional area along the Michigan Mainland shore from the Wyandotte Yacht Club to the site of the former Firestone Steel, now operating as the warehouse of Materials Processing Corp (MPC), a distance of 2.5 miles. A substantial increase in contamination begins at Firestone Steel and continues downstream to Monguagon Creek. The Firestone Steel Area is a large depositional area of heavy metals, PCBs, Hg, and Oil and Grease. Highest concentrations are found primarily on the surface, suggesting recent or continuing sources. The depositional area continuing downstream of Firestone Steel shows extreme contamination though less elevated, with the highest contamination found primarily below the surface, though surficial concentrations also exceeding QL and ERM/SEL levels.

Cadmium levels were generally low upstream of Firestone Steel (non-detect to 13 ppm). Just downstream of Firestone Steel at the Federal Marine Terminal station, levels increase to 40 ppm and were found highest on the surface. Cadmium levels continue to be predominantly higher on the surface and decrease downstream from the Federal Marine Terminal Area to Lake Erie.

The distribution of contaminants (2-4 DTP) from Monguagon Creek to the Lower Trenton Channel and Lake Erie has been well documented (Carter and Hites, 1992). In Trenton Channel Project sediments surveys, the mouth of Monguagon Creek had increased levels of PAHs and Oil and Grease compared to surrounding sites. Monguagon Creek is now in the process of remediation (Conestoga, 1996). This action will prevent Monguagon Creek from further being a primary source of PAHs and Oil and Grease to the sediments of the Lower Trenton Channel. The size of the large contaminated zone in the middle Trenton extends from Firestone Steel to the Upper McLouth Property, encompassing the Federal Marine Terminal site and mouth of Monguagon Creek.

The swift laminar current in the Trenton Channel has kept sediment contamination in a tight lens along the Michigan mainland and has also kept it from crossing over to the Grosse Ile side. Transect sediment core sampling (3 stations-nearshore, midshore, offshore) across from the upper property area of McLouth Steel shows the contamination to be in a band extending from the mainland to the west bank of the navigation channel, basically hugging the shore. The highest contaminant levels in this area downstream of Monguagon creek are found now in a lens hugging the mainland shore with the greatest concentrations below surficial layered sediments.

Downstream of Monguagon Creek, the next area of contamination is below the former McLouth Steel-Trenton facility, the depositional area known as Black Lagoon. Our sediment surveys have determined that contamination in Black Lagoon is bound by the shoreline and a shoal area. Depth of contamination extends to approximately 230cm, where clean native clays are found. The surficial sediments of Black Lagoon have been surveyed for over 10 years. Contamination on the surface has decreased, though still above ERM/SEL levels. The cause of this decrease is most likely due to resuspension of sediments and subsequent redeposition of new material (thus dilution).

With assessment complete, the focus of the Trenton Channel Project now shifts towards remediation. The next steps include examining remedial options for the six zones of the Trenton Channel determined to be extremely contaminated. With the Sediment Treatability Study nearing completion (Snell Environmental and MDEQ-SWQD, 1996), the feasibility of applying treatment technologies will be investigated alongside more conventional disposal techniques.

LITERATURE CITED:

Besser, J.M., Giesy, J.P., Kubitz, J.A., Verbrugge, D.A., Coon, T.G., and Braselton, W.E. 1996.
Assessment of Sediment Quality in Dredged and Undredged Areas of the Trenton Channel of the Detroit River, Michigan USA, using the Sediment Quality Triad. J. Great Lakes Res. 22:683-696.

Carter, D.S., and Hites, R.A. 1992. Unusual alkylphenols and their transport in the Trenton Channel of the Detroit River, Michigan. J. Great Lakes Res., 18(1):125-131.

Caulfield, D.D. 1994. Final Report:Precision Digital Hydroacoustic Sediment Characterization/Analysis in the Trenton Channel of the Detroit River. Caulfield Engineering. Oyama, British Columbia.

Conestoga-Rovers and Associates. 1996. Final Design Report: Monguagon Creek Site, Riverview Michigan. October 1996. Romulus, MI.

Fallon, M.E. and Horvath, F.J. 1985. Preliminary Assessment of Contaminants in Soft Sediment of the Detroit River. J. Great Lakes Res. 11: 373-378.

Farara, D.G., and Burt, A.J. 1993. BEAK Consultants Report: Environmental Assessment of Detroit River Sediments and Benthic Macroinvertebrate Communities-1991. Ontario Ministry of Environment and Energy. London, Ontario.

Froese D.L., Verbrugge D.A., Snyder S.A., Tilton F., Giesy, J. P. 1996. PCBs in the Detroit River Water Column. Pesticide Research Center, Department of Fisheries and Wildlife, Institute for Environmental Toxicology, Michigan State University. East Lansing, MI.

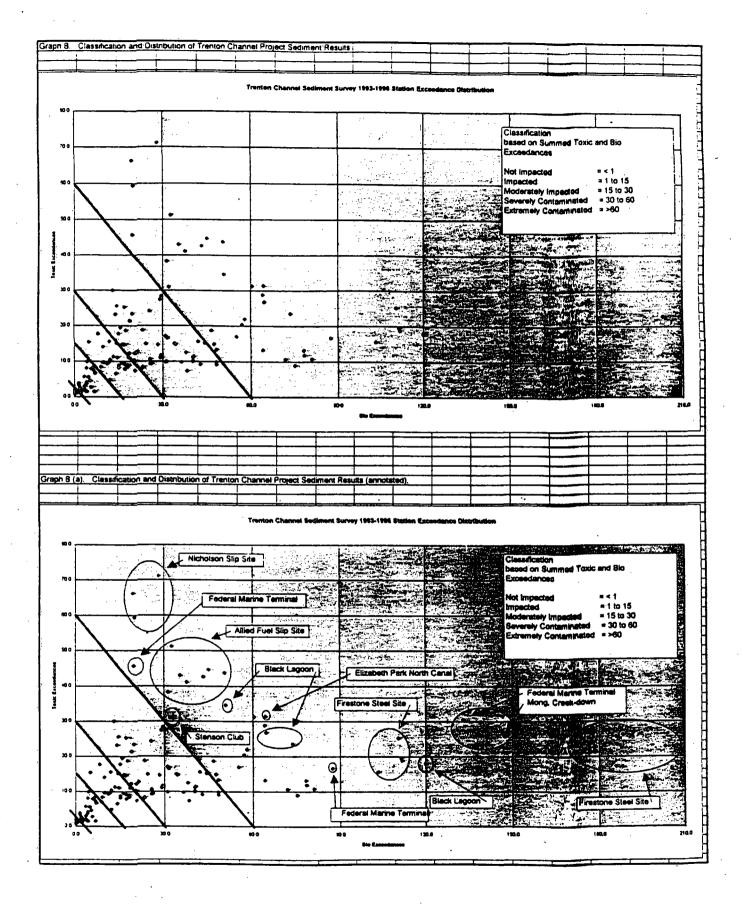
Giesy, J.P., Graney, R.L., Newsted, J.L., Rosiu, C. J., Benda, A., Kreis, Jr., R.G. and Horvath, F.J. 1988. Comparison of Three Sediment Bioassay Methods using Detroit River Sediments. Environ. Toxicol. Chem. 7:483-498.

Kreis, Jr., R.G. 1989. Proposal: Numerical Ranking of Hazardous Sediment to Prioritize Sites for Remedial Action. U.S. Environmental Protection Agency-Large Lakes Research Station, Grosse Ile, MI.

Kreis, Russell. 1996. Elizabeth Park Marina Sediment Surveillance. USEPA Memorandum (unpublished), USEPA Large Lakes and Rivers Research Station, Grosse Ile, MI.

Lick, W., McNeil J., Xu Y.J., Taylor, C. 1995. Measurements of the Resuspension and Erosion of Sediments in Rivers. Department of Mechanical and Environmental Engineering-University of California. Santa Barbara, CA.

Long, E.R. and L.G. Morgan. 1990. The Potential for Biological Effects of Sediment-sorbed Contaminants Tested in the National Status and Trends Program. NOAA Tech. Memo. NOS OMA 62, National Oceanic and Atmospheric Administration, Seattle, WA. 174pp.


Manny B.A., 1997. Proposal: Contaminants of Surfical Soils and Wild Celery Tubers at Grassy Island in the Wyandotte National Wildlife Refuge in the Detroit River. U.S. Geological Survey, Biological Research Division. Ann Arbor, MI.

Michigan Department of Environmental Quality. 1987. Stage 1 Report: Remedial Action Plan for Detroit River Area of Concern. Surface Water Quality Division. Lansing, Michigan.

Michigan Department of Environmental Quality. 1995. Biennial Report: Remedial Action Plan for Detroit River Area of Concern. Surface Water Quality Division. Lansing, Michigan.

 TABLE A. Parameters and Guideline Levels Used to Evaluate Trenton Channel Project Sediment Results.

Bioaccumulative Parameters	Symbol	QL (ppm d.w.	Note)
Mercury	Hg	0.1	EPA Method 245.1/7470.7471
Polychlorinated Biphenols	PCBs	0.33	EPA Method 608/8081
Toxic Parameters		Aquatic L	ife Guidelines (ppm d.w.)
Parameter	Symbol	ERM S	SEL Note
Arsenic	As	85	
Cadmium	Cd	9.6	
Chromium	Cr	145	
Copper	Cu	390	
Iron	Fe	. 4	10000
Nickel	Ni	50	
Manganese	Mn	•	1100
Lead	Pb	110	
Zinc	Zn	270	
Oil and Grease	O&G	-	1500
Polyaromatic Hydrocarbons	PAHs	35	Sum of 12 PAH's

Figure 1. Trenton Channel Project: Sediment Survey Chronology

October 1993 (GLNPO/SWQD/UCSB)

Primary Objectives

Vertical and horizontal hotspot delineation

Contaminant distribution in Lower TC

Secondary Objectives

Resuspension measurements

November 1993 (GLNPO/SWQD/MSU)

Primary Objective

Elizabeth Park Marina study

April 1994 (GLNPO/LLRS/SWQD)

Primary Objective

Vertical and horizontal hotspot delineation

Secondary Objective

Baseline data for hydroacoustic profiling

May 1994 (SWQD)

Primary Objective

Surficial contaminant distribution in mid and lower Trenton Channel

June 1994 (GLNPO/LLRS/SWOD)

Primary Objective

Hydroacoustic profiling-Trenton Channel (Caulfield Eng.)

November 1994 (SWQD)

Primary Objective

Elizabeth Park Marina surfical contaminant trends

April 1996 (LLRS)

Primary objective

Elizabeth Park Marina depositional rates

May 1996 (GLNPO/SWQD)

Primary Objective

Hotspot delineation and characterization of Upper TC Sediments

Secondary Objective

Support of Grassy Island NWR study

June 1996 (SWQD)

Primary Objectives

Ponar sediment sampling at tributaries to the Detroit River

Confirmation of RAP hotspots

December 1996 (SWQD)

Primary Objective

Elizabeth Park Marina surfical contaminant trends

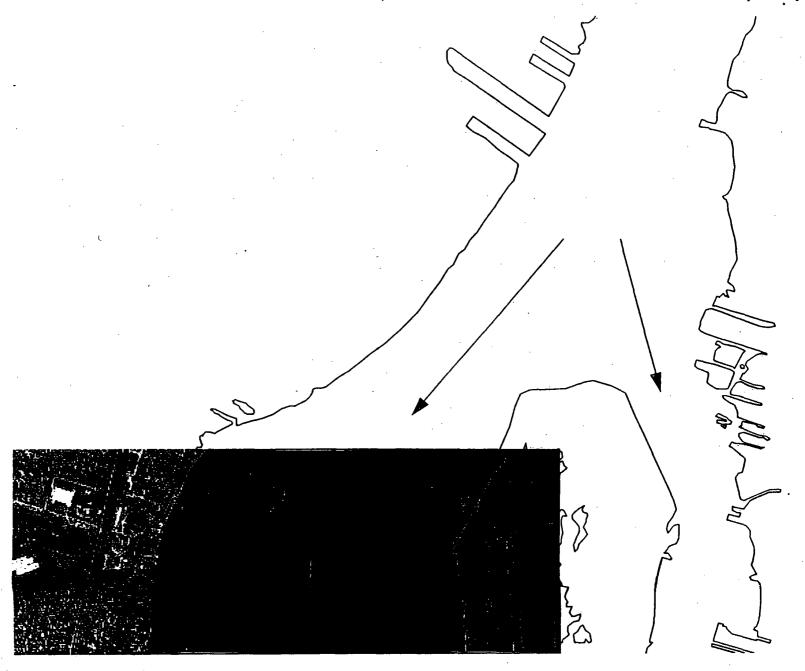


Figure 3. Upper Trenton Channel Rouge River to EcorseCreek



Figure 5. Upper Trenton Channel Rouge River to EcorseCreek

TOTAL PCBS

all values ppm dry weight

3.4 = surface grab

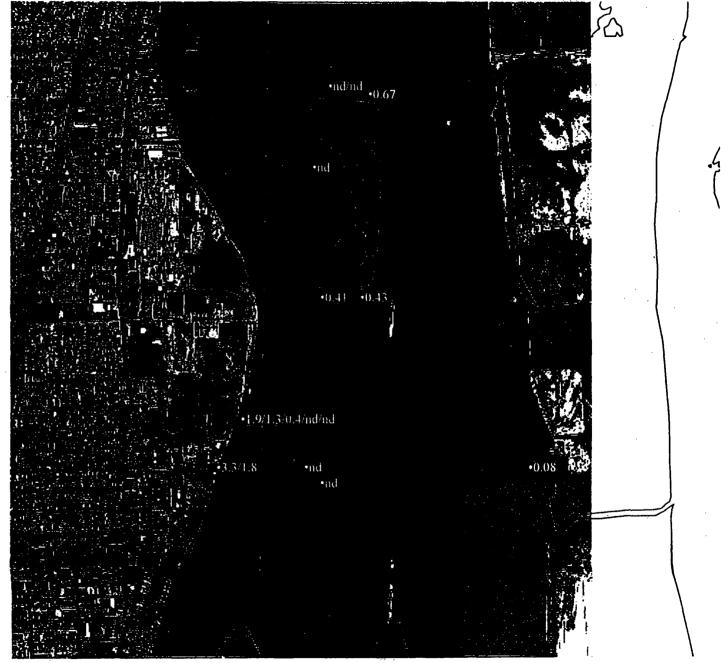


Figure 7. Upper Trenton Channel
Grassy Island to Pt. Hennepin

Figure 9. Upper Trenton Channel
Pt. Hennepin to Grosse Ile Toll Bridge

MERCURY

all values ppm dry weight

3.4 = surface grab

Figure 11. Firestone Steel Site

OIL and GREAS
all values ppm
dry weight

3.4 = surface grab

Figure 13. Firestone Steel Site

MERCURY

all values ppm dry weight

3.4 = surface grab

Figure 15. Federal Marine Terminal / Monguagon Creek Area

LEAD

all values ppm dry weight

3.4 = surface grab

Figure 17. Federal Marine Terminal / Monguagon Creek Area

MERCURY

all values ppm dry weight

3.4 = surface grab

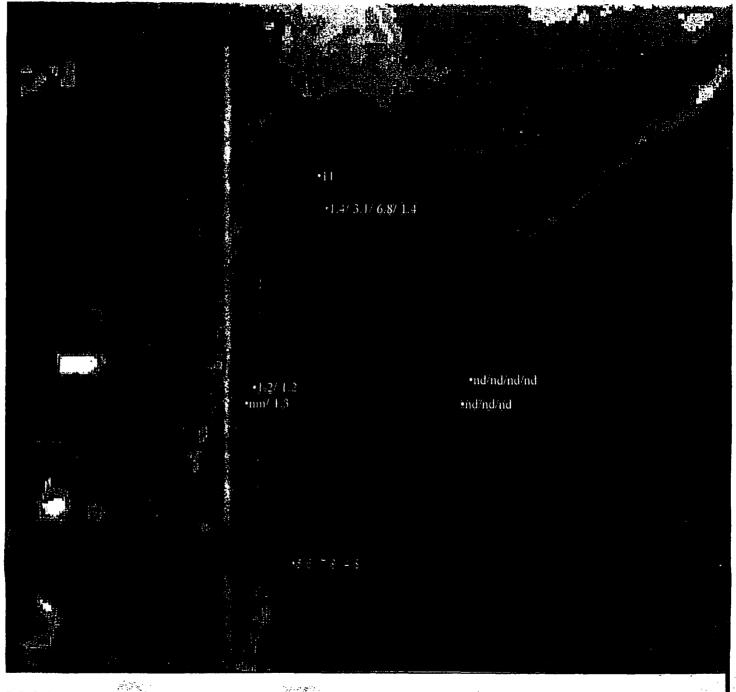


Figure 19. Black Lagoon

OIL and GREASE

all values ppm dry weight

3.4 = surface grab

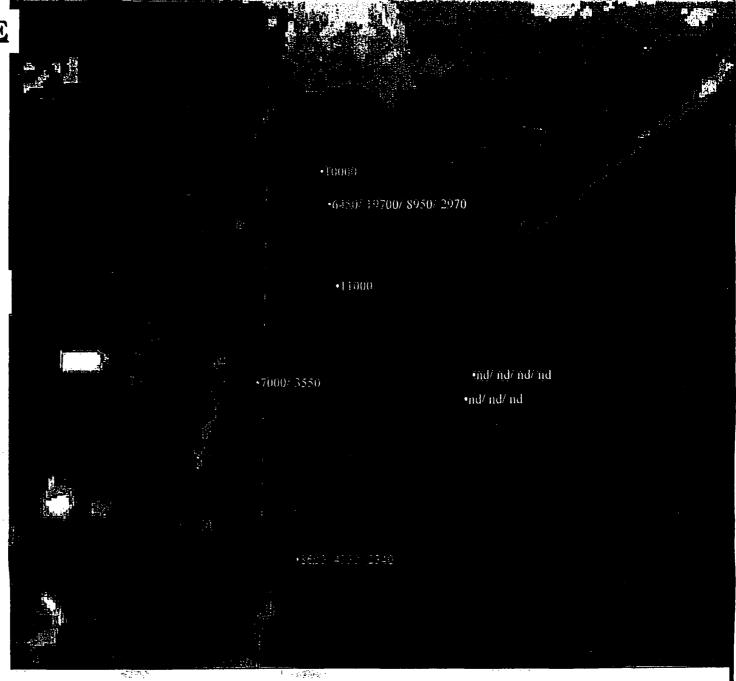
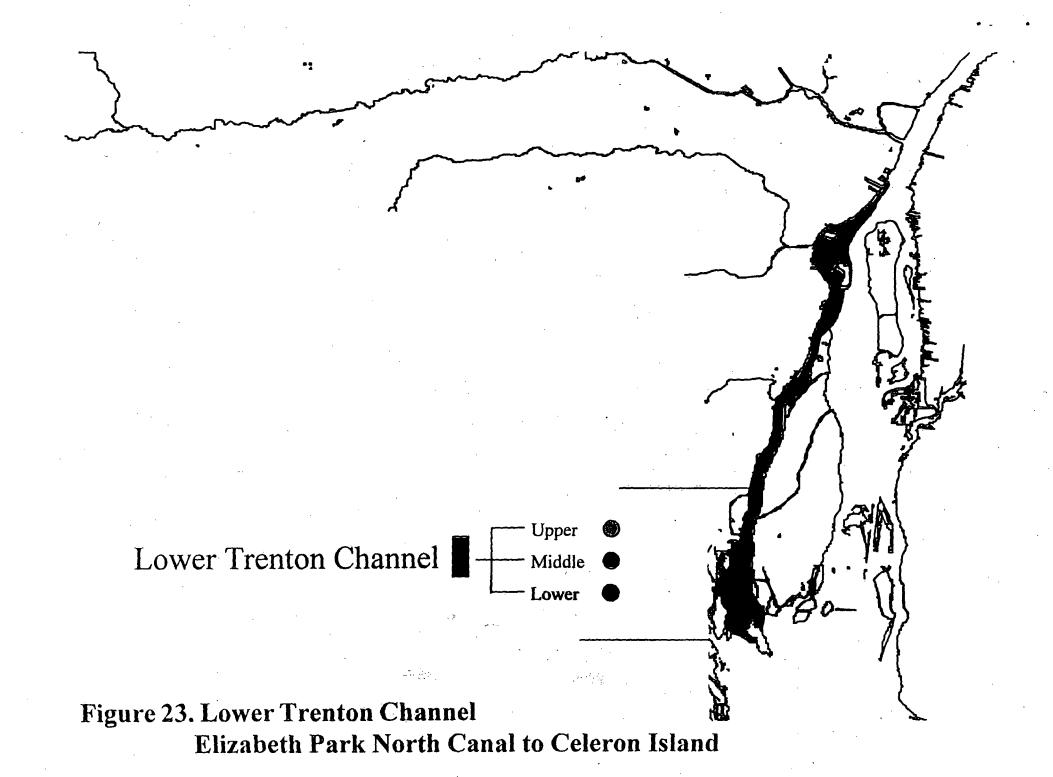



Figure 21. Black Lagoon

TOTAL PCBS

all values ppm dry weight

3.4 = surface grab

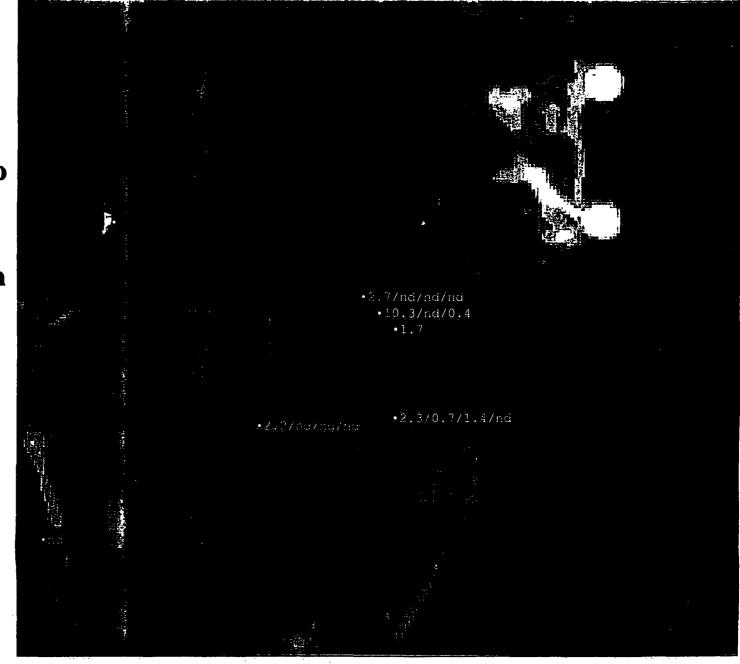


Figure 25. Elizabeth Park North Canal

ZINC

all values ppm dry weight

3.4 = surface grab

1.2 / 2.3 / 3.4 = surface/to/bottom core intervals

1-Site location

-1993 Year sampled

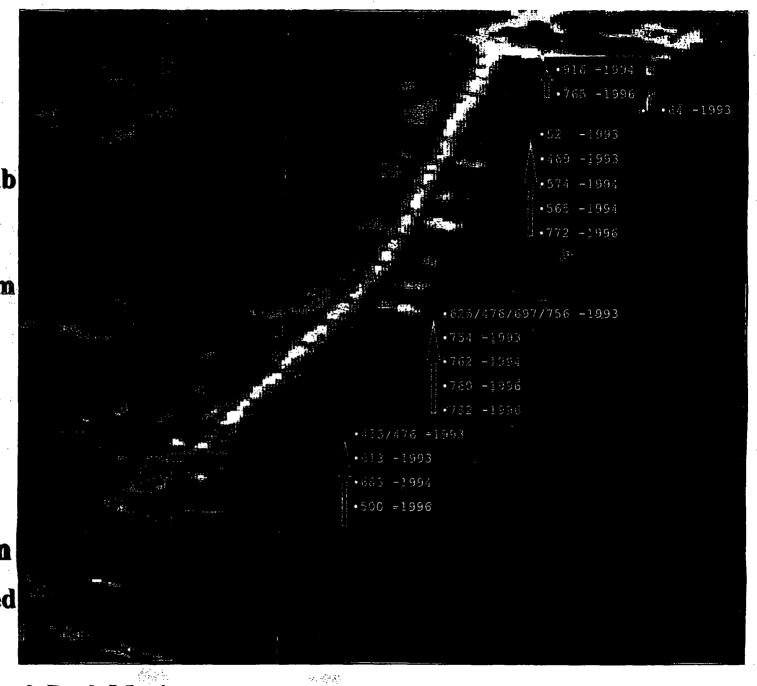


Figure 27. Elizabeth Park Marina

ZINC

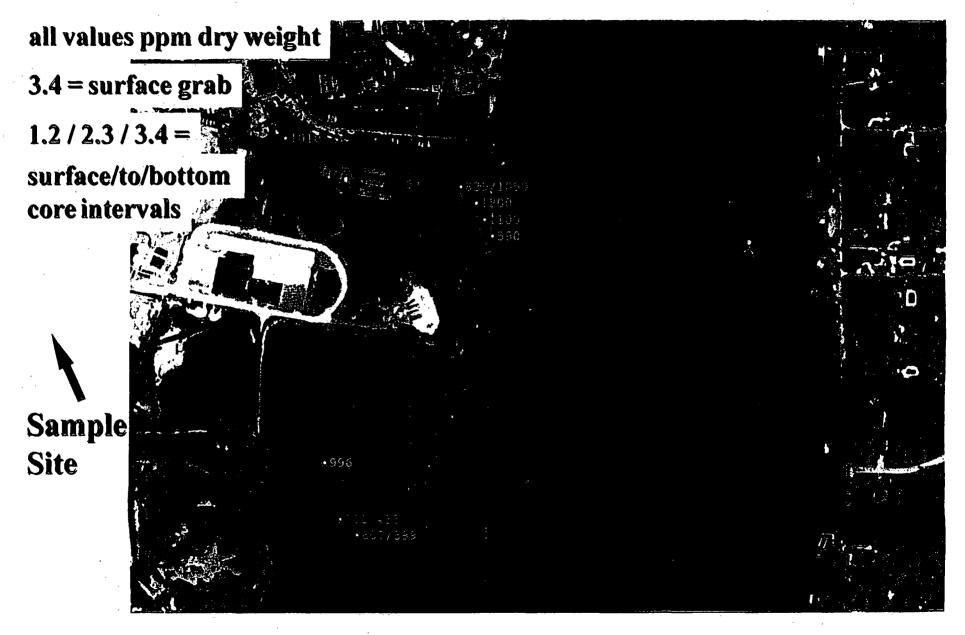


Figure 29. Elizabeth Park South Canal Area

3. Hexane dioic acid (adipic acid) mono (ethyl hexyl) ester:

90% of adipic acid esters are commercially used as plasticizers. 10% are used commercially as high performance lubricants. 2-ethyl hexyl adipates are reported to be excellent low temperature lubricants. They also offer low temperature flexibility in PVC formulations.

4. Isopentane/Isoprene, Terpene and Steroid Type Compounds

Many chemical components/compounds of plants and animals have the common characteristic of their carbon skeletons being evenly divisible into iso-C₅ units, i.e. isoprene or isopentane units. These units may be joined in regular sequences head-to-tail, or, in head-to-tail groupings that are joined tail-to-tail. Many of these compounds or fragments of compounds were detected in the sediment analysis.

a. isopentane sequencing:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Dodecane

Pentadecane

Hexadecane

eicosane

chemicals identified in this grouping include:

2-methyl eicosane

2,6,10 and 2,6,11-trimethyl dodecanes

1,6,10,14 and 2,6,10,14-tetramethylpentadecanes (pristane)

2,6,10,14 tetramethylhexadecane (phytane)

Squalene is a common naturally occurring substance that is also used as a commercial chemical intermediate in steroid production. Lanolin (containing sterols including lanosterol which may be derived from squalene) is used in ointments, soaps, face and hand creams, suntan preparations, hair-sets and leather finishing.

References

- Barker, R., 1971, Organic Chemistry of Biological Compounds, Foundations of Modern Organic Chemistry Series, Prentice-Hall Inc, Englewood Cliffs, NJ.
- Eckroth, D. et. al. Editors, 1984, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed., John Wiley and Sons, New York, NY.
- Morrison, R.T. and Boyd, R.N., 1969, Organic Chemistry, 2nd Ed.,
 Allyn and Bacon, Inc.,
 Boston, MA.
- Noller, C.R., 1968, Textbook of Organic Chemistry, W.B. Saunders Co., Philadelphia, PA.
- Sax, N.I. and Lewis, R.J. Editors, 1987, Hawley's Condensed Chemical Dictionary, 11th Ed., Van Nostrand Reinhold Co., New York, NY.
- Verschueren, K., 1983, Handbook of Environmental Data on Organic.

 Chemicals, 2nd Ed., Van Nostrand Reinhold Co., New York, NY

Appendix B. Sediment Survey Results-Data Tables

Metals

PCBs

PAHs

Oil and Grease

Grain Size

Acid Volatile Sulfides

TOC, Density

Lat-Long

Classification A: Upstream to Downstream

Classification B: Most Contaminated to Least Contaminated

PENTON CHANNED PROJECT EDINENT CHANNES PROJECT	1:54	HEAVY	LIAT3P.	<u> 79/∢9</u>					-			
MEN. UMEM.S.F. FES.W.J	length.							<u>i</u>				
E DESCRIPTION	10 50	30L:35	707. As	797 31	TOT. 25	TOT :3 1	707. Fe	TCT. Pb	FOS YOU	TOT. Ha	TOT NO	TOT 7-
								101. 75	<u> </u>	101 119		TOT. Zn
M Long and Morgan, 1390:	-,		35	3.5		330		.10		1.3	50	270
<u>L. Persuad et. al. OME, 1993)</u> antification Level (EPA Method 345)	17470 717						10000		1120	 		
	7.3	·		:i		 				<u> </u>	 -	
2 t Strestone upper	000-010	11	3.4	10	150	140	10000	239	419	13 1	30	190
	110-091	5.3	1.3	15	230	100	32000	300	112	16	100	560
<u></u>	331-152	- 1		1 :1	130	250	25000	250	110	:6	94	570
	152-1941	13	- :3	10	140	190	25000	130	112	95	70	4 40
GC1 Firestone Steel -Mid 452 site:	000-030	43	1.2	15	360	300	31000	340		16	100	590
<u> </u>	330-031	54	- ;; -	1 15	140	210	25000	190	330 432	10	57	520
	1391-134	5 ?	3.2	1.0	58 .	190	18000	160	112	2.9	19	430
												L
SP_firestone Steel	PONAR	45	. 6	11	165	199	14000	190	771	10	76	592
	PONAR	47		1 11	166	221	41000	211	571	ő. S	36.8.	562
)? Firestane lower	Ponar	42	9.4	(;)	250	150	35000	260	507	LO	1:30	190
									- 'Y'			
ONGUAGON CREEK-UPSTREAM	00-010	11	3.5	40	119		37500	140	520	2.4	68	563
DNGUAGON CREEK-UPSTREAM	030-104	47	1 3.3	+	1 467	246	44100	333	591	1.2	210	364
CNGUAGON CREEK-UPSTREAM	104-142	53	11	14	303	217	41500	333	920	9.3	1'60	721
ONGUAGON CREEK-UPSTREAM	200-030	41	7.8	33	109	118	38800	149	369	2.5	70	458
ONGUAGON CREEK-UPSTREAM	1030-076	43	3.1_	21	248	183	45900	277	244	3.4	160	625
NGUAGON CREEK-UPSTREAM	076-150	47	3.9	22	500	255	42900	352	354	3.1	160	525
DNGUAGON CREEK-UPSTREAM	150-190	60	1.2	7.6	170	122	24400	212	116	5.7	73	377
IF Magnager 200k	 -		 	+		 _	-			2 22		1200
E Monguagon Szeek	'Eckman	48	7.4	6.2	77	70	22000	150	140	0.29	64	2300
- Monguagon Creek	Ponar	58	35	11.2	178	123	45900	179	155	<0.1	103	850
- Fighting Island	Ponar	33	កន	nd	21	14	14200	nd	216	<0.1	17	32
C1 MNCK DNS-Nearshore	000-027	. 70	5.1	- 29	78	91	17700			1.1	16	412
C1 MNCK DNS-Nearshore	1027-051	61	5.1	30	99	101	20700	115	127	0.95	56	449
ci -	051-095	58	1 5.7	15	167	131	35700	213	100	1.5	90	648
ct	1095-132	71	9	17	405	239	48300	302	542	1.4	251	987
				↓								-
Cl MNCK DNS-Offshore	1000-027	30	3.5	<0.05	9.2	14	14100	9.1	331	<0.1	17	50
<u> </u>	027-051	34	1 3.9	<0.05	13	15	14900	17	205	0.23	1	+ -30
NGUAGON CREEK-DOWN	000-150	4.3	3.5	1 19	437	252	12000	340	556	3.9	200	879
NGUAGON CREEK-DOWN	130-163	50	: 13	. 22	456		51 20	424	632	11	210	1200
					-	<u> </u>					<u> </u>	
ACK LAGGON-SENTER	000-010		1 5.3	14	102	99	53200	193	744	1.4	160	1720
ACK LAGOON-CENTER ACK LAGOON-CENTER	120-210	34 40	22	17	162	219	112000	449	1649	3.1 6.0	90	1030
ACK LAGOON-CENTER	210-229		4.9	3.7	45	99	19800	76	110	1.4	41	225
				1								ļ
ACK LAGOON-LOWER	100-060	42	24	12	191	226	137000	574	2040 -	5.6	100	1340
LACK LAGOON-LOWER	060-152	51	10	11	163	1 247	35800	187	400	7.8	72 56	354
ACK LAGOON-LOWER	152-203	54	10	9.8	121	166	29000	118	197	1.5	 '}	1 777
ACK LAGOON-EAST	200-055	31	9.1	<0.050	9.8	5.2	7430	3.9	140	<0.1	9.5	27
ACK LAGOON-EAST	055-103	30	1.9	<0.050	8.6	3.7	8150	3.4	173	<0.1	7.1	1.7
LACK LAGOGN-EAST	103-166		2.3	<0.030		5.6	7260	4.1	102	<0.1	7.9	17
ACK LAGOON-EAST	1156-229	80	2.6	0.367	9.7	 '	7480	1.9	179	<0.1	8.6	23
ACK LAGOON-EAST	000-015	30	1.3	<0.350	1 9	4.7	6840	3.6	120	<0.1	7:, 6	26
ACK LAGOON-EAST	035-133	17	1.3	<0.050		4.2	7130	3.6	161	<0.1	7.9	21
ACK LAGOON-EAST	133-182		3,2	<0.050		8.6	8380	1	201	<0.1	9.5	29
					T .						1	<u> </u>
Cl BLLG-Nearshore	000-030	40	1:-	1.5	1 121	110	53300	218	743	1.2	58	2410
C1 (WWES Lab)	1030-075	12	7.3	111	315	200	57000	337	927	1.2	144	2410
Cl BLLG-Nearshore	030-075	12	12	30	418	233	76500	468	1100	1.3	206	3200
(MDNR Lab)	_+									,		
			ļ	ļ	-						 _	+
TE 3000	Eckman	35	7	3.3	98	96	41000	160	620	11	52	1300
7 - Black Lacoon	Ponar	5.5		3.7	156	111	73000	254	077	<0.1	+	2060
		37	. 53	7.		- 4.4.		ب د	_	1 30.4		

SEDIMENT CHEMISTRY RESULTS	•3€∑:	15,477	METALS 19741	£3./6;								\prod
STIE-BESCRIPTION	נה בה הו	150,100	STOT A.	52 10:	101 32	10.	TOT. F	45 IC1	77	11 10:	AT TOT MA TOT Za	74 2a
, F. T.			3	3.	13	33		110			3	1 277
d 245.	7470 7471	=					10000		109	ا د		
EPN .new stite:	20002		::	Ξ	140	197	17700	258			4 9	316
K-H23	3 CHAN	2	13	J.	; j	14.7	13000	14	1	1.5		1 165
SIL-ERM Upland	Jence		73	3	Ξ	115	3 6000	149	Ĕ		52. 4	574
S110- EPH Spland Dup.	Ponac		13	-	E	5	16000	119	100	2.3	J - 62	ž65
EPH-1 S::-52M ()pland)	Eckman	12	:	5.9	112	137	43000	153	É	- 9	60.9	172
PTK M43-215	1 Jeuc		5	9.4	187	125	40000	175	43	2.9	30.6	762
EPM-2 (S12-52M M14)	Sexman	16	5		121	139	45000	147	33	- - -	1 1	740
E2W2-dup (\$12- 29W ()pland)	DECKER 03	26		5 9	157	118	43000	149	1		67.9	182
S13-EPH South	Ponar		=	-	129	129	45000	[3]	Ħ		2	683
EPH-1 :S11-EPH South)	Ec (man	2	4	2.5	64	65	11000	ē			3	500
JAP EPSC DOCK	PONAR	2.1	[:	٥	205	165	58900	272	=	6		0101
15P EPSC-Inlet	PCNAR	2 2 2	<u> </u>	3.5	100	126	49000	1149	8 2	- [u u	1200
20 CI EPSC-Inlet	180-180	2 2	:: =	= =	225 186	153	58700 82700	273 347		5-	102	939
49E EPSC	Eckman.	20	7.6	7.2	71	100	34000	100	ğ	9.96	a	590
16P Honsanto Lagoon	PCNAS	ā	2	5	193	194	80200	246	1000	اوا	89	996
19 C1 Monsanto Bay	000-053	2 %	9 9	3.2	96	165	96300	148	ř	 9 6	55	101
19 C2 Nonsanto Bay	000-051			7	31.1	145	14300	102			2	607
DEBANY - ANG BELLVAGO	000	11	-	2								
CHRYSLER BAY-INNER	058-079	8 69	3.5		: 5	29	19800	= = =		60.10	21	98
CHRYSLER BAY-OUTER	000-013	8	3		78	82	27100	104	100	1.5	S)	٤
CHRYSLER SAY-OUTER	1913-041	ů,	1.1	0.25	14	19	16100	11	190	<0.10	27	67
179 Chry Bay Marsh Inlet	SYNDS	52 3	-	60.03	29.5	٤	17300	F	ž	0.18	25	250
39P Swan Island-North	PONAR	=	Ė	12.7	317	\$	17700	=	ě	0.38	29	178
192 Above Humbuq Macina	EVNO	اقا	5.		2	1	25200	87	Ĕ	0.87	*	661
S9 - Chrysler Bay	3PUC.	2	B	2	77	19	33200	35	820	6.1	2	765
CZLERON ISLAND	000-041			2	9,1	-	10600	22	ā	0.16	0.16 16	: 2
CELERON ISLAND	1974-197	30	7.1	3 1	9 . 1		17500	7.1	190	ç0.10	19	61

ISEDIMENT CHEMISTRY PESULTS		 -	PCBs 3CAN						.
	Core Length		mg/cg 1.4.					 	:
SITE DESCRIPTION		TOT: PCB!	PCB-1016	203-1221	PCB-1232	PC3-1242	173-1248	203-1234	203-126
·		. !							
ERM 'Long and Morgan, 1990)		3.4	i		· .				
Quantification Level - EPA Meth	00 209/9091)	9.33					_	}	!
15 Cl T.C. North Marsh	200-222		<0.33	<0.42		<0.33	(0.33	1 < 3. 23	:2.3.
15 01	922-952		<0.33	<0.33	<0.33	<0.33	<0.33	<3.33	<2.3
15 01	262-100		<0.11	<0.33	<0.33	<0.33	<0.33	< 2.33	1
								Ĭ	-
51 C 1 Firestone apper	000-030	13.40					3.2	1.9	13.4
	930-991	9.31					4.39	1.35	2.37
		14.20			ļ. <u></u> .	ļ	1.55	2.5	7.35
	152-194	5.39				<u> </u>	2.36	2.43	1 < 0.
66Cl Firestone Steel -Mid (45	2 's1 '000-010	1.99					1.36	1.35	1.57
	(030-091	3.85					1.31	0.99	1.65
	1091-104	0.55					< 0.33	0.18	0.47
45P Firestone Steel	PONAR	1.10	<4.4	<1.2	<4.4	<4.4	c4.4	<0.33	1.10
45.002	PONAR	2.20	<1.1	<1.1	<1.1	<1.1	<1.1	2.20	1 <1.
45PC2	SANO2	2.56	<u> </u>	<1.1	<1.1	<1.1	<1.1	1.70	0.97
SOP Firestone lower	Ponar	3.43				 	1.26	1.31	0.36
	1					 	 	+	1
MONGUAGON CREEK-UPSTREAM	000-030	2.4	<2.0	<1.3	<1.3	<2.0	₹2.0	<2.6	2.4
MONGUAGON CREEK-UPSTREAM	030-104	2.5	<2.9	<2.9	<2.9	<2.9	<2.9	<2.9	2.5
MONGUAGON CREEK-UPSTREAM	104-142	11.2	<1.3	<1.3	<1.3	<1.3	3.7	5.5	<1.
WONGER CONT. CONT.	000 000		<u> </u>				 	 	+
MONGUAGON CREEK-UPSTREAM MONGUAGON CREEK-UPSTREAM	000-030	9.9	<2.2 <3.1	<2.2	<2.2	<2.2	<2.2 <3.1	<2.2 <3.1	3.3
MONGUAGON CREEK-UPSTREAM	075-150	9.7	<2.3	<5.6	<3.1 <2.8	<3.1	1.9	<4.9	1 1 9
MONGUAGON CREEK-UPSTREAM	150-180	10	<2.2	<4.4	<2.2	<2.2	5.7	4.3	₹3.
	1,33, 33,			- 11.7			 		1
48E Monguagon Creek	Eckman	1.52				 			1.52
									Ţ
S5 - Monguagon Creek	Ponar	6.18						-	↓
						<u> </u>	 		
FI - Fighting Island	Ponar	0.08			 		 		+
25 Cl MNCK DNS-Nearshore	000-027	<u> </u>	<0.33	<0.33	<0.33	<0.33	₹0.33	<0.33	<0.
25 C1	027-051		<0.33	<0.33	<0.33	<0.33	₹0.33	<0.33	<0.
25 C1		1.08	<0.33	<0.33	<0.33	<0.3]	0,36	<0.33	0.7
25_C1	095-132	1.15	<0.33	<0.33	<0,33	·<0.33	0.58	<0.33	0.5
							T	ļ	_
21 Cl MNCK DNS-Offshore	1000-027	L	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.
21 Cl	027-051		<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	 <0.
21 C1	027-051								
21 C1 MCNGUAGON CREEK-DOWN	027-051	5.9	<0.33 <0.33 <0.33	<0.33 <2.3 <5.3	<0.33 <0.33	· <0.33 <0.33	2.3	<5.5 <7.2	3.6
21 C1	027-051 000-150 150-168		<0.33	<2.9	<0.33	<0.33	2.3	<5.5 <7.2	3.6
IMONGUAGON CREEK-DOWN IMONGUAGON CREEK-DOWN BLACK LAGOON-CENTER	027-051 000-150 150-168	12.3	<0.33 <0.33 <0.33	<2.9 <5.3	<0.33 <0.33 <9.91	<0.33 <0.33 <8.91	2.3 9.6	<5.5 <7.2 <8.91	3.6
INCNGUAGON CREEK-DOWN IMONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER	000-150 150-168 000-733 030-120	12.3 9 6.5	<0.33 <0.33 <0.33 <8.31 <2.0	<2.3 <5.3 <3.91 <2.0	<0.33 <0.33 <9.91 <2.0	<0.33 <0.33 <8.91 <2.0	2.3 9.6 (0.91	<5.5 <7.2 <8.91 <3.9	3.6 2.1 <8.
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER	027-051 000-150 150-168 000-730 030-120 120-210	12.3 5.5	<0.33 <0.33 <0.33 <8.31 <2.0 <1.1	<2.9 <5.3 <3.91 <2.0 <1.1	<0.33 <0.33 <9.91 <2.0 <1.1	<0.33 <0.33 <8.91 <2.0 <1.1	2.3 9.6 (0.91 2.4 (1.1	<5.5 <7.2 <8.91 <3.9	3.6 2.1 <8. 4.1
INCNGUAGON CREEK-DOWN IMONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER	000-150 150-168 000-733 030-120	12.3 9 6.5	<0.33 <0.33 <0.33 <8.31 <2.0	<2.3 <5.3 <3.91 <2.0	<0.33 <0.33 <9.91 <2.0	<0.33 <0.33 <8.91 <2.0	2.3 9.6 (0.91	<5.5 <7.2 <8.91 <3.9	3.6 2.1 <8. 4.1
21 C1 IMONGUAGON CREEK-DOWN IMONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER	000-150 150-160 000-730 000-730 030-120 120-210 210-229	12.3 9 6.5 1.8	<0.33 <0.33 <0.33 <8.31 <2.0 <1.1 <0.44	<2.9 <5.3 <3.91 <2.0 <1.1	<0.33 <0.33 <0.33 <9.91 <2.0 <1.1 <0.44	<0.33 <0.33 <8.91 <2.0 <1.1	2.3 9.6 (0.91 2.4 (1.1	<5.5 <7.2 <8.91 <3.9	3.6 2.1 <8. 4.1 <1.
21 C1 IMCNGUAGON CREEK-DOWN IMONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER	027-051 000-150 150-168 000-730 030-120 120-210	12.3 5.5	<0.33 <0.33 <0.33 <8.31 <2.0 <1.1	<2.9 <5.3 <5.3 <3.91 <2.0 <1.1 <1.3	<0.33 <0.33 <9.91 <2.0 <1.1	<0.33 <0.33 <8.91 <2.0 <1.1 <0.44	2.3 9.6 40.91 2.4 41.1 40.44	<5.5 <7.2 <8.91 <3.9 1.8 <0.44	3.6 2.1 <8. 4.1 <1. <0.
21 C1 IMONGUAGON CREEK-DOWN IMONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER	000-150 150-168 000-730 000-730 010-120 120-210 210-229	12.3 6.5 1.8 0	<0.33 <0.33 <0.33 <8.31 <2.0 <1.1 <0.44	<2.9 <5.3 <3.91 <2.0 <1.1 <1.3	<0.33 <0.33 <9.91 <2.0 <1.1 <0.44	<0.33 <0.33 <0.33 <8.91 <2.0 <1.1 <0.44	2.3 9.6 (0.91 2.4 (1.1 (0.44	<5.5 <7.2 <8.91 <3.9 1.8 <0.44	3.6 2.7 <8. 4.1 <1. <0.
MONGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-750 060-152 152-203	2.3 5.5 1.8 0	<0.33 <0.33 <0.31 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7	<2.9 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7	<0.33 <0.33 <9.91 <2.0 <1.1 <0.44 <3.2 <4.0 <2.5	<0.33 <0.33 <0.33 <8.91 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7	2.3 9.6 (4.91 2.4 (1.1 (9.44 (3.2 (4.0 (41.7	<5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7	3.6 2.1 4.1 <1. <0. <1. <1.
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-750 060-152 152-203	12.3 5.5 1.8 0 2.3 0	<0.33 <0.33 <0.33 <0.31 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7	<2.9 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7	<pre><0.33 <0.33 <0.33 <0.991 <2.0 <1.1 <0.44 <3.2 <4.0 <2.5 <0.33</pre>	<0.3) <0.3) <8.91 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7	2.3 9.6 (9.91 2.4 (1.1 (0.44 (3.2 (4.0 41.7	<5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7	3.6 2.1 <8. 4.1 <1. <0. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST BLACK LAGOON-EAST	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-950 060-152 152-203 000-055 055-103	12.3 5.5 1.8 0 2.3 0 0	<0.33 <0.33 <8.31 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.33	<2.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.33 <0.33	<0.33 <0.33 <0.33 <0.33 <0.31 <0.31 <0.41 <0.44 <0.44 <0.44 <0.45 <0.32 <0.33 <0.33 <0.33	<0.33 <0.33 <8.91 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.13	2.3 9.6 (4.91 2.4 (1.1 (9.44 (4.0 (4.7 (4.0) (4.7)	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <<0.33 <0.33</pre>	3.6 2.1 4.1 <1. <0. <1. <1. <0.
21 C1 IMCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST BLACK LAGOON-EAST BLACK LAGOON-EAST	027-051 000-150 150-168 000-733 030-120 120-210 210-229 000-950 060-152 152-203 000-055 055-103 103-166	12. J	<0.33 <0.33 <0.33 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.33 <0.33 <0.33	<2.9 <5.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.13 <0.33	<pre><0.33 <0.33 <9.91 <2.0 <1.1 <0.44 <<3.2 <4.0 <2.5 </pre>	<0.33 <0.33 <8.91 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.13 <0.33	2.3 9.6 2.4 4.1.1 49.44 43.2 44.0 41.7 40.33 40.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 2.8 <2.7 <1.7 <0.33 <0.33 <0.33</pre>	3.6 2.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST BLACK LAGOON-EAST	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-950 060-152 152-203 000-055 055-103	12.3 5.5 1.8 0 2.3 0 0	<0.33 <0.33 <8.31 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.33	<2.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.33 <0.33	<0.33 <0.33 <0.33 <0.33 <0.31 <0.31 <0.41 <0.44 <0.44 <0.44 <0.45 <0.32 <0.33 <0.33 <0.33	<0.33 <0.33 <8.91 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.13	2.3 9.6 (4.91 2.4 (1.1 (9.44 (4.0 (4.7 (4.0) (4.7)	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <<0.33 <0.33</pre>	3.6 2.7 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST BLACK LAGOON-EAST BLACK LAGOON-EAST BLACK LAGOON-EAST	027-051 000-150 150-168 000-733 030-120 120-210 210-229 000-950 060-152 152-203 000-055 055-103 103-166	12. J	<0.33 <0.33 <0.33 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.33 <0.33 <0.33	<2.9 <5.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.13 <0.33	<pre><0.33 <0.33 <9.91 <2.0 <1.1 <0.44 <<3.2 <4.0 <2.5 </pre>	<0.33 <0.33 <8.91 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.13 <0.33	2.3 9.6 2.4 4.1.1 49.44 43.2 44.0 41.7 40.33 40.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 2.8 <2.7 <1.7 <0.33 <0.33 <0.33</pre>	3.6 2.1 4.1 <1. <0. <1. <1. <1. <0. <0. <0. <0. <0. <0. <0. <0.
21 C1 IMCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST BLACK LAGOON-EAST BLACK LAGOON-EAST	027-051 000-150 150-168 000-330 030-120 120-210 210-229 000-350 060-152 152-203 000-055 1055-103 103-166 166-229	12. J 5. 5 1. 9 0 2. 3 0 0 0 0 0 0 0	<0.33 <0.31 <0.31 <2.0 <1.1 <0.44 <1.1 <0.44 <1.7 <0.33 <0.33 <0.33 <0.33	<2.9 <5.3 <5.3 <7.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33	<0.33 <0.33 <9.91 <2.0 <1.1, <0.44 <2.4.0 <2.5 <0.33 <0.33 <0.33 <0.33	<0.33 <0.33 <8.91 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.13 <0.13 <0.33	40.91 2.4 41.1 42.44 43.2 40.33 40.33 40.33 40.33 40.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <0.33 <0.3</pre>	3.6 2.1 4.1 <1. <0. <1. <1. <0. <0. <0. <0. <0. <0.
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST BLACK LAGOON-EAST BLACK LAGOON-EAST BLACK LAGOON-EAST BLACK LAGOON-EAST	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-950 060-152 152-203 000-955 035-103 103-166 166-229	12. J 5. 5 1. 8 0 2. 3 0 0 0 0 0 0 0 0 0 0 0	<0.33 <0.33 <0.33 <0.31 <2.0 <1.1 <0.44 < < < < < < < < <	<2.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.33 <0.33 <0.33	<pre><0.33 <0.33 <9.91 <2.0 <1.1 <0.44 <3.2 <4.0 <2.5 <0.33 <0.33 <0.33 <0.33 <0.33</pre>	<pre><0.33 <0.37 <8.91 <2.0 <1.1 <0.44 <</pre>	\$.3 9.6 \$4.91 \$4.1.1 \$4.0	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33</pre>	3.6 2.1 4.1 <1. <0. <1. <1. <0. <0. <0. <0. <0. <0.
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-750 060-152 152-203 000-055 055-103 103-166 166-229 000-035 035-133 133-192	12. J 5. 5 1. 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.33 <0.33 <0.33 <0.31 <2.0 <1.1 <0.44 <0.44 <0.3.2 <4.0 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<2.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.33 <0.33 <0.33 <0.33	<pre><0.33 <0.33 <9.91 <2.0 <1.1, <0.44 <2.5 <4.0 <2.5 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 </pre>	<pre><0.33 <0.33 <8.91 <2.0 <1.1 <0.44 < < < < < < <</pre>	\$.3 9.6 (4.91 2.4 (1.1 (9.44 (3.2 (4.0 (1.7 (0.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33</pre>	3.6 2.1 4.1 <0. <1. <1. <0. <0. <0. <0. <0. <0. <0. <0. <0. <0
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-950 060-152 152-203 000-955 0055-103 103-166 166-229 000-035 035-133 133-192	12. J	<0.33 <0.33 <0.31 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><2.9 <5.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.13 <0.13 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33</pre>	<pre><0.33 <0.33 <9.91 <22.0 <1.1 <0.44 </pre> <2.3 <4.0 <2.5 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><0.33 <0.37 <8.91 <2.0 <1.1 <0.44 <</pre>	43.3 44.0 41.7 40.33 40.33 40.33 40.33 40.33 40.33 40.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <0.33 /pre>	3.6 2.1 <8. 4.1 <1. <1. <1. <0. <0. <0. <0. <0. <0. <0. <0. <0. <0
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-750 060-152 152-203 000-055 055-103 103-166 166-229 000-035 035-133 133-192	12. J 5. 5 1. 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.33 <0.33 <0.33 <0.31 <2.0 <1.1 <0.44 <0.44 <0.3.2 <4.0 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<2.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.33 <0.33 <0.33 <0.33	<pre><0.33 <0.33 <9.91 <2.0 <1.1, <0.44 <2.5 <4.0 <2.5 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 </pre>	<pre><0.33 <0.33 <8.91 <2.0 <1.1 <0.44 < < < < < < <</pre>	\$.3 9.6 (4.91 2.4 (1.1 (9.44 (3.2 (4.0 (1.7 (0.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33</pre>	3.6 2.1 <8. 4.1 <1. <1. <1. <0. <0. <0. <0. <0. <0. <0. <0. <0. <0
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST 027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-950 060-152 152-203 000-955 1055-103 103-166 166-229 000-035 035-133 133-192	12. J 5. 5 1. 8 0 2. 3 0 0 0 0 0 0 1. 64 2. 50	<0.33 <0.33 <0.31 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><2.9 <5.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.13 <0.13 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33</pre>	<pre><0.33 <0.33 <9.91 <22.0 <1.1 <0.44 </pre> <2.3 <4.0 <2.5 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><0.33 <0.37 <8.91 <2.0 <1.1 <0.44 <</pre>	43.3 44.0 41.7 40.33 40.33 40.33 40.33 40.33 40.33 40.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <0.33 /pre>	3.6 2.7 <8. 4.1 <1. <1. <1. <2. <0. <0. <0. <0. <0. <0. <0. <0. <0. <0	
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST 24 C1 BLLG-Nearshore 24 C1 SLIG-Nearshore	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-950 060-152 152-203 000-955 0055-103 103-166 166-229 000-035 035-133 133-192	12. J	<0.33 <0.33 <0.31 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><2.9 <5.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.13 <0.13 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33</pre>	<pre><0.33 <0.33 <9.91 <22.0 <1.1 <0.44 </pre> <2.3 <4.0 <2.5 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><0.33 <0.37 <8.91 <2.0 <1.1 <0.44 <</pre>	43.3 44.0 41.7 40.33 40.33 40.33 40.33 40.33 40.33 40.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <0.33 /pre>	3.6 2.7 4.1 <0. <1. <0. <0. <0. <0. <0. <0. <0. <0. <0. <0
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST 027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-950 060-152 152-203 000-955 1055-103 103-166 166-229 000-035 035-133 133-192	12. J 5. 5 1. 8 0 2. 3 0 0 0 0 0 0 1. 64 2. 50	<0.33 <0.33 <0.31 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><2.9 <5.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.13 <0.13 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33</pre>	<pre><0.33 <0.33 <9.91 <22.0 <1.1 <0.44 </pre> <2.3 <4.0 <2.5 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><0.33 <0.37 <8.91 <2.0 <1.1 <0.44 <</pre>	43.3 44.0 41.7 40.33 40.33 40.33 40.33 40.33 40.33 40.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <0.33 /pre>	3.6 2.7 4.1 <0. <1. <0. <0. <0. <0. <0. <0. <0. <0. <0. <0	
21 C1 MCNGUAGON CREEK-DOWN MONGUAGON CREEK-DOWN BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-LOWER BLACK LAGOON-EAST 24 C1 BLLG-Nearshore 24 C1 SLIG-Nearshore	027-051 000-150 150-168 000-730 030-120 120-210 210-229 000-950 060-152 152-203 000-955 1055-103 103-166 166-229 000-035 035-133 133-192	12. J 5. 5 1. 8 0 2. 3 0 0 0 0 0 0 1. 64 2. 50	<0.33 <0.33 <0.31 <2.0 <1.1 <0.44 <3.2 <4.0 <1.7 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><2.9 <5.3 <5.3 <3.91 <2.0 <1.1 <1.3 <3.2 <5.2 <1.7 <0.13 <0.13 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33</pre>	<pre><0.33 <0.33 <9.91 <22.0 <1.1 <0.44 </pre> <2.3 <4.0 <2.5 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33 <0.33	<pre><0.33 <0.37 <8.91 <2.0 <1.1 <0.44 <</pre>	43.3 44.0 41.7 40.33 40.33 40.33 40.33 40.33 40.33 40.33	<pre><5.5 <7.2 <8.91 <3.9 1.8 <0.44 2.8 <2.7 <1.7 <0.33 /pre>	<0. <0. <0. <0. <1.4

SEDIMENT IMEMISTRY PESULTS			PCBs 3CAN						
	Core Length		g/kg g.w.			!			
SITE DESCRIPTION		TOT. PCB:	203-1016			PC3-1213	209-1218	:PCB- :254	PCB-126
ERM Long and Morgan, 1990)	 i	3.4							
Quantification Level EPA Metho	nd 508/3081:	2.11			 	+		+	
1								i	
(SII-ERM Upland	Pon ale)			1				
		<u>:</u>							
SIND- EPM Upland Dup.	Ponar				 -	<u> </u>		<u> </u>	:
'EPM-1 ::SUI-EPM (pland)	Eckman					 	ļ		<u> </u>
Semet : (Stress /Olina)	Sec.and.	1			; -	 		i	·
1312-EPM M14	Ponas	1 7			 	 		 -	-
					L	L.			1
[EPM-2 (S12-EPM Mid)	Eckman	. < 3.33 1							
<u> </u>					ļ	<u> </u>		 -	
E2M2-dup (S12- E2M Voland)	Eckman	! 					 	+	
S13-EPM South	Ponar			<u> </u>	 -	 		 	†
1919 911 30001	1,71,44	1			 	 			L
EPM-3 (S13-EPM South)	Eckman.	< 0.33							
									1
145 ESSC DOCK	2CNAR	2.93	<1.2	<1.2	<1.2	<1.2	01.2	<1.2	0.8
35P EPSC-Inlet	- RANCS	3.30	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.
135PC2	ZONAR	1 3.20	<1.0	<1.0	<1.0	<1.0	\$1.0	<1.0	1 <1.
.1	1!	1		1,5,5	1	1	- 3.5	1	
20 Cl EPSC-Inlet	200-393	2.40	<0.33	<0.33	- <0.33	<0.33	1.30	1.10	<0.
20 01	083-099	1.33	40.33	<0.33	<0.33	<0.33	0.54	0.19	<0.
				 	 	ļ			┼┷
49E EPSC	Sckman	-							
136P Monsanto Lagoon	PONAR	0.90	<0.33	<0.33	<0.33	<0.33	0.57	<0.33	0.3
		Ĺ			1				
13 Cl Monsanto Bay	000-053	0.54	<0.33	<0.33	<0.33	<0.13	40.33	0.54	<0.
19 C1	053-085	1.15	<0.3	<1.0	<0.33	<0.33	0.36	0.79	<0.
13.63	.000-051	2.40	<0.13	<0.13	<0.33	<0.33	1.10	1,30	<0.
19 C2 Monsanto Bay	051-085	1.37	<0.33	<0.33	<0.33	<0.33	0, 42	0.95	<0.
	1	+		1,1,1,1	1	1			
CHRYSLER BAY-INNER	000-010	_0	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.
CHRYSLER BAY-INNER	030-058	1 0	<0.33	<0.33	<0.33	<0.33	(0.33	<0.33	<0.
CHRYSLER BAY-INNER	1058-079	1 2	<0.33	<0.33	<0.33	<0.33	(0.33	: <0.33	<0.
CHRYSLER BAY-OUTER	000-313	1 1.79	<0.41	<0.31	<0.41	<0.41	0,98	0.81	<0.
CHRYSLER BAY-OUTER	013-061	0	<0.33	<0.33	<0.33	(0.33	(0.33	<0.33	<0.
		1							
372 Chry Bay Marsh Inlet	PONAR	0.00	<0.3	<0.8	<0.8	<0.8	₹0.8	<0.8	<0.
1,	1201/22	1 0 30	1 40 33	10.33	 	 		<0.33	₹0.
339 Swan Island-North	PONAR	0.00	<0.33	<0.33	<0.33	<0.33	(0,33	<0.13	+
1389 Above Humbug Marina	- PCHAR	1 3.00	<0.33	<0.33	<0.33	<0.33	.40,33	<0.33	<0.
TTT TOO TO HOUSE I HE CANE	1	1	<u> </u>	1	T	1	4.4.2		
S9 - Chrysler Bay	Ponar	1.39							
					<u> </u>			 	+
CELERON ISLAnd	1000-043	1 2	<0.33	<0.33	<0.33	<0.33	(0, 33		<0.
CELERON ISLAND	243-974 274-197	1 2	<0.33	<0.33	<0.33	<0.33	(0.33		₹ <u>0.</u>

											•				
033 033 033 033 033 033 033 033 033 033		6 û û	666) <0.3)<0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	666	666	205	131 < 0, 33 < 0, 33 0 0 131 0 131 < 0, 33		3 2 2		000	11-174		DELERON ISLAND
				-	+	1			<u> </u>		-	24 3	20.01		BCX 33-And
40 66 40.66 <0.66 <0.66 <0.66		ô	ô.86	6 <0.6	66 < 0	- ĉo	. 56 3	20, 55 40) (3)	3 56		٥	RANCE		1 13
044 <0.40 0.42 1.3	_		ô		0. 9	9 . 1	98 1.9	86.0 01.00	101.05	(0.10		9 9	PANAS	-	Swen Island-North
<0.4 <2.0 <0.4 <0.4 <0.4	ê	â	20	ô.	9 42	.9 <0.9	<0.4 <0.3	c0.4 <	3.4	l L		0	RANCE		Chry Bay Marsh Inter
033 d33 d33 d33 d33		â	â	ê.	100	â	0.	<0.11 <0.11 <0.11	3	(0, 33		00	013-061		HRYSLER BAY-OUTER
0.33 60.33		ê	a ê		-	- 6	1				+	11	010-00	-	SLER SAY-OUTER
0.08 0.08 0.08 0.08 0.08 0.08 0.08		8 2 3	ခ် ဗီ 8	0.6 < 0.66 < 0.6 < 0.6	11 6 6 6	- - 6 6 6	000	<2.56 <2.66 <0.66 0. <0.33 <0.33 <0.33 0.	3 5 5	66.6		000	030-030		CHRYSLER BAY-INNER CHRYSLER BAY-INNER CHRYSLER BAY-INNER
033 040 033 12 2.52 033 044 033 2.1 3.8	$\overline{}$	3.5	0.41	2.2	10		2 2.	1.75 2	<0.33 <0.33 <0.33 0.75		+		ا 251-251 156-150		32 Monsanto Bay
031 0.5 0.33 1.1 3 031 0.63 0.33 1.2 2.6	6033 12033	2.3	ôô E	777		1	+ -	0. 11 2	<0.33 0.49	3 3 2 2	- - -	17 22	353-985 353-985	- -	
40.39 40.39 40.39 1.7	6.30	=	â			2 7.9	1.2	191 <0. 19	100	11		3.35	KRICE		
1.9 3.6	\prod	20		25	\dashv	1.9	- -		-			15.5	Econon		£25C
0.46 0.91 <0.33 2.9 6.3	6	3.8	â	5	- -	┧,	[6]	<0.3310.48 4.5	1, 1, 10	(7, 33			083-088		.:
							-1-4		2	- +	- -	11	00-00	_	: EPSC-Inlec
40.46 42.8 0.6 1.9 40.55		3.28	22	<2.9 2.6		<1.1 1.5		<0.55 <0.55 1.9	ê (3) 5 (5)	60.5 60.5		13.3	PCNAR	-	SP EPSC-Inter
40,6 43.0 43.6 2 40.6	ê	u	ê	(1.0 2.a	Щ.	£.2 2.3		ô.	ê.	- S	- _	ت	PCNAA	-	EPSC DOCK
2.8 0.48 1:6 3.7	\prod	12	0.67		-[:]		9 6	0.56 2			-	33.11	Schman	- -	PM-1 S1J-EPM South
1.5 2.3	\prod	ā	††	17	1.5	-	2	0.12 2		\prod	$\frac{1}{1}$	18.19	∂onar'	- -	-SEM Journ
0.94 1.2 2.2		ā		=	12	-	2 2.6	1.2	- -			14.54	Ecican		-2 'S12-EPM MICH
2 2.6	\prod	24	\prod	2	\prod	+	2.6 2.	2	1		+	20 73	Ponac	- - + +	PTK NAS-21
0.61		080		-	$\dagger \dagger$	+	H	\coprod			+	2 19	Ec/man	- -	PM-1 (SII-EPM Upland)
	\prod	2	\parallel	=	H		1 86.0	0			- -	936	Ponac	.	D- ESM Upland Dup.
0.95		<u>.</u>	\parallel		#		F		\prod		- -	916	Poner	-	11-52M Upland
		0 93	\prod	-	H	+	╂	\prod			+	302	Sckman	_	ż
19 17	\prod	=	\parallel	-	H		1.4 1.5		Щ			12.62	Ponar	-	new site)
			\parallel	+	+	+	+	$\ \cdot\ $	_			86	2 Puc		- South Marina
				- -	+	+	\mathbb{H}	+	 -			35.8	Ponas	.	Mid Marina
				- -	-	-	+				+	2	- Con a c		Wat of Marina
2.3 <0.00 2 4.6	_		â		+ -					1 1	- -		200	- -	- North Karta
064 25 <0.66 22 52	ê	\$	- - - - - - - - - -	15/			5 3 8 7	3 2	< 0.55 0.74 < 0.55 0.57	() (3 36 36	-	35 3	110-013 110-000		MARINA-RIVER BED ON MARINA-RIVER BED ON
1.1 40 66 40 661 40 661 0.96 1.3	66 83	= 2	ê ê		66	1 66.66	1-1-	0.66 0.66	(2) (3) (6) (1)	80		62	960-676		MARINA-RIVER BED UP
49 059 <033 3.6	6	2	A A	1.1.2			12,	33 34 2	13)1.3-329)23-329		AN CBE BEATE-PAILER
0,13 40.30 40.30 40.33	ê	0.00	_1 _1	27 28 27 28 28				< . 65 <1 65 <1 65 3				П) () ()		df. C36 22:18-WY PY
633 633 633	6		1 = 1					3	اد	֓֞֜֞֜֜֜֜֜֜֜֜֜֜֜֡		20	30:-06		MAR CHA-HPLAND
ברים ורוס ורוס ורוס ורוס איני		â !	â	3	١	<u>- </u>	3	ב י	3. 11.	3 13		00	33		MARINA-CUTSIDE
<2.4 <0.48) 2 3.2 i	ŝ	2	24	<2.4 3.4 <2.4	35 <2.	35 co 35	- - 	2.	() ()	3		14.8	RANCE		SPC Bridge 5
11	62	٥	٦					131 (3. 13) 1.	2			<u>u</u>	EFFICE		EPC Bridge 4
ô	â	=	·25	3.4				â	3		-	10 3	PARITOR		E2C Bridge 1
11 N1 21 P2	2	2	2	2	93	- -	اتا	2	1	امًا ا	SHAC	릭	5 3		
			П		+	H		- -		SCAN			engr		E DEGUATATION .
benzo(g.n.i)perylene nuorationene pyrene	Unorana		Serviene	0(9,71)	Den	+-					-	35		200	Long and Morgan, I
naphalana	10 S	Qa.Tla	G G	mene .)fluoran	1201021	- 04	acenaphthylene	Cenagn					[3]	COMENT CHEMICITARY PECT
dendo(1.2.3-cd)pyrana			9	37.50		mracan	nece lozn	2		dhini di	1				

TRENTON CHANNEL PROJECT			
SEDIMENT CHEMISTRY RESULT	'S		
	<u> </u>		
SEL (Persaud et. al. OME,	1993)	1500	
SITE DESCRIPTION		OIL & GREASE	
	cm_	mg/kg d.w.	
69Cl Wyandotte Yatch Cl		9000	
	030-066	9000	
		<50	
68P N of Pt. Hennepin		<50	i
68E N of Pt. Hennevin	ļ	<50	
68E N of Pt. Hennepin	Eckman	1 (30	
67Cl Portofino	000-030	7000	
U/CI ILUICOLINO	330	1000	·
43P Portofino Slip	PONAR	1390	
132 131131110 3110		1	
42P Pt. Hennepin	PONAR	367	
		1	
15 Cl T.C. North Marsh	000-022	<50	
15 C1	022-062	<50	
15 C1	062-100	<50	
	<u> </u>		
51 C 1 Firestone upper	000-030	11000	
	030-091	19000	
	091-152	16000	
	152-194	15000	
	_	<u>i </u>	
66Cl Firestone Steel -M	000-030	21000	
	030-091	13000	
	091-104	12000	
45P Firestone Steel	PONAR	8410	
	PONAR		
	ļ 		ļ
50P Firestone lower	Ponar	9000	· ·
	1000 030	7000	
MONGUAGON CREEK-UPSTREAM		7290	<u> </u>
MONGUAGON CREEK-UPSTREAM		1 11200	
MONGUAGON CREEK-UPSTREAM	1104-142	23300	
MONGUAGON CREEK-UPSTREAM	000-030	3-30	
MONGUAGON CREEK-UPSTREAM		21600	
MONGUAGON CREEK-UPSTREAM		21600	
MONGUAGON CREEK-UPSTREAM		12400	
The state of the s		1	
48E Monguagon Creek	Eckman	9000	
	T		
S5 - Monguagon Creek	Ponar	5800	
FI - Fighting Island	Ponar	200	
25 Cl MNCK DNS-Nearshor	000-027	1110	
25 C1	027-051	120	
25 C1	051-095	444	
25 C1	095-132	897	
	 	 	ļ
21 C1 MNCK DNS-Offshore		<50	<u> </u>
21 C1	027-051	<50	
·	1	1	<u> </u>
MONGUAGON CREEK-DOWN	000-150	3930	ļ
MONGUAGON CREEK-DOWN	1150-168	7640	1
PLACK INCOME CONTRA	1000 030	5450	
BLACK LAGOON-CENTER	1000-030	6450	<u> </u>
BLACK LAGOON-CENTER	120-210	19700	
BLACK LAGOON-CENTER BLACK LAGOON-CENTER	1210-210	9950	
DENCE PURCOUNTER	1410-249	. 2970	1

	(5)	7 44 37	
	<50 <50	043-074	CELERON :stand
_	2000	Poner	S9 - Chrysler Bay
	390	PONAR	39P Above Humbuq Marina
	454	SCHOR	4230N-puris; Uens dec
	25	RYKO	372 Chry Bay Marsh Inlet
	<\$0	01:3-061	BAY-OUTER
	3.8	000-013	CHRYSLER BAY-OUTER
	\$30	058-079	CHRYSEER BAY-INNER
	<50	000-930	9AY-INNER
	278Q 3010	150-050	19 C2 Monsanto Bay
	1380	051-085	
	3160	36.1	C1 Mondants Ray
	1320	PCNAR	16P Monsanco Lagoon
	:000c	Eckman	19E 27SC
	1620	083-083	10 01 20 01 3861-1014c
	2 6	PCNAR	35P EPSC-Inlec 35PC2
	ng.	PONAR	JAP EPSC DOCK
	G	Eckman	EPM-3 (S1)-EPM South)
	ğ	Poner	S13-EPH South
	- 6	Echman .	EPM2-dup (S12- EPM Upla
	3	Eckman	EPH-2 (\$12-5PH H(d)
	76	Poner	PIK NGZ-21S
	ŝ	Eciman	EPM-1 (S11-EPM 'Spland)
	É	Poner	S110- SPM Upland Dup.
	3	Ponac	Sil-EPH Upland
	3	Eckman	EPH-N
	ŝ	Ponaz	EPN (new site)
	2100	Ponar	EP3 - South Marina
	9900	2 anc 5	EP2 - Mid Marina
	3,00	Sonar	EP1 - North Marina
	1480	P10-F10 F10-000	NO CBE MARINA-ALIVER BE NARINA-REVER BE
	772	1029-038	WALVA-ALVER BED UP
	0565	999-910	EP MARINA-RIVER BED UP.
	<50	900-000	MARINA-UPLAnd
	<50	000-020	ANT SAM
	.;a	PCNAR	s abpliag odg aff
	าวก	PCNAR	1. ebplag 323 220
	og e	RANCE	315 ESC Bridge 1
	OIL & GREASE	CORE LENGTH	NOTTGIES STIS
	1500	, 1993;	SEL Persaud et al. OME.
		- 45	SECTIONS THEMESTRY PRODUCTS
	_		2

 $\mathcal{H}_{\mathcal{F}}(\mathcal{F})$

raine in the second of the sec

ĝ.

			12 P Promos See 13 C1 VACK DISCHARMENT 14 CHARLEY VACONE CHEEK VOWER 15 C1 VACK DISCHARMENT 16 CACK VACONE CHEEK VOWER 17 C1 VACK VACONE CHEEK VOWER 18 LACK VACONE CHEEK VACK 19 C1 VACK 19 C1 VACK 10 C1 VACK 10 C1 VACK 10 C1 VACK 11 VACK 11 VACK 11 VACK 11 VACK 12 C1 VACK 13 C1 VACK 14 VACK 15 C1 VACK 16 C1 VACK 17 VACK 18 LACK 18 LACK VACONE CHEEK VACK 19 C1 VACK 19 C1 VACK 10 V
		·	12. 2617517139
			44EO SAND FINE SAND 0 3 728 10 3 7
•			17. 17. 17. 17. 17. 17. 17. 17. 17. 17.
			CORD-METER SILT S
	·	•	
		•	は
			所では、400元 100 100 100 100 100 100 100
		·	

RENTON CHANNEL PROJECT SEDIMENT CHEMISTRY RESULTS	1	1		SEM: AVS>1	0.1514
SEDIMENT CREMISING MESONIS	 	346 /664 343 /4676		Metals	Sulfide
THE DESCRIPTION	} -	AVS/SEM ANALYSIS		?resum e d	, bufferring
SITE DESCRIPTION				Available	; capacity
	Core				<u> </u>
	length	umol/g	umol/g		umol/g
	in cm	TOTAL METALS	SULFIDE	SEM: AV3	AVS-SEM
43P Portofino Slip	PONAR	100.6	5.5	18.3	<u> </u>
429 Pt. Hennepin	PONAR	49.8	6	9.3	+
	1.				1
15 Cl T.C. North Marsh	000-022	88.3	3.8	232	
15 C1	022-062	93.7	<0.05		
15 C1	062-100	118.9	<0.05		
	<u> </u>	ļ. <u></u>			
45P Firestone Steel	PONAR	302.4	73	4.1	
MONGUAGON CREEK-UPSTREAM	000-030	12.3	356.8	0.03	344.5
MONGUAGON CREEK-UPSTREAM	030-104	34.8	448.9	0.08	414.1
MONGUAGON CREEK-UPSTREAM	104-142	21.8	349.0	0.06	327.2
MONGUAGON CREEK-UPSTREAM	000-030	10.9	299.1	0.04	288.2
MONGUAGON CREEK-UPSTREAM	030-076	16.3	316.9	0.05	300.6
MONGUAGON CREEK-UPSTREAM	076-150	30.0	236.1	0.13	206.1
MONGUAGON CREEK-UPSTREAM	150-180	10.9	215.5	0.05	204.6
S5 - Monguagon Creek	Ponar	11.59	10.8	1.07	
- Hongdayon Creek	l	11.39	10.0	1.07	·
FI - Fighting Island	Ponar	1.02	0.39	2.61	
25 C1 MNCK DNS-Nearshore	000-027	145.05	7	20.7	
25 C1	027-051	175.93	4.3	40.9	
25 C1	051-095	225.12	9.7	23.2	-
25 C1	095-132	386.88	6	64.5	
	1 33 132	300.00	1	04.3	
21 Cl MNCK DNS-Offshore	000-027	94	<0.05		+
21 C1	027-051	64.7	0.97	66.7	
	1		\		·
MONGUAGON CREEK-DOWN	000-150	29.3	211.9	0.14	182.6
MONGUAGON CREEK-DOWN	150-168	33.0	142.5	0.23	109.5
	1				
BLACK LAGOON-CENTER	000-030	43.5	1189.0	0.04	1145.5
BLACK LAGOON-CENTER	030-120	31.3	719.1	0.04	687.8
BLACK LAGOON-CENTER	120-210	23.3	234.5	0.10	211.2
BLACK LAGOON-CENTER	210-229	5.4	88.6	0.06	83.2
BLACK LAGOON-LOWER	000-060	32.1	136.4	0.24	104.3
BLACK LAGOON-LOWER	060-152	16.1	128.4	0.13	112.3
BLACK LAGOON-LOWER	152-203	12.8	138.1	0.09	125.3
				3.03	
BLACK LAGOON-EAST	000-055	0.8	8.5	0.09	7.7
BLACK LAGOON-EAST	055-103	0.4	8 8	0.05	8.4
BLACK LAGOON-EAST	103-166	0.5	8.8	0.06	8.3
BLACK LAGOON-EAST	166-229	0.5	0.4	1.25	-0.1
BLACK LAGOON-EAST	000-035	0.5	7.3	0.07	
					6.8
BLACK LAGOON-EAST	035-133	0.5	4.7	0.11	4.2
BLACK LAGOON-EAST	133-132	05	1.3	0.38	0.8
24 Cl BLLG-Nearshore	000-030	252.8	55	4.6	-
24 Cl (WWES Lab)	030-075	546.7	409	1.6	
	1				
S7 - Black Lagoon	Ponar	20.16	18.1	1.11	

		1		
TRENTON CHANNEL PROJECT		%TOTAL ORG.	DENSITY	DENSITY
	Coso longth			
SEDIMENT CHEMISTRY RESUL		CARBON	LB/FT3	
	cm	DRY BASIS	WET	DRY
	<u> </u>	<u> </u>		
SEL (Persaud et. al. OME,	1993)	1 10		
	ļ			
55C1 Allied Oil Slip NW	000-030	2.9		
	030-091	3.2		
	 			
	091-152	3.4		<u> </u>
<u></u>	152-218	2		
		<u> </u>		ļ
55C2 Allied Oil Slip NW	000-030	3	<u> </u>	Ì
	030-091	2.1		
	091-147	2.1		
		i i		
56Cl Nickelson South Sl	000-030	2		
TOT WASHERSON SOUCH ST	030-043	1.7		
	030-043	1./	 	
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 	 	
56C2 Nickelson South Sli		3	L	
	030-091	1.9		
	091-152	1.9		
	152-201	1.7		
59Cl Stenson Club	000-030	3.4		
3701 000.130.1 0100	030-091	2.6		 -
			 	
	091-152	2.2	<u> </u>	
<u> </u>	152-213	2.7		ļ
<u> </u>	213-224	2		<u> </u>
				L
64P Mud Island Northsid	Ponar	2.2		
65P Mud Island SW	Ponar	1.7		
10,241.6				
60Cl Mud Island -South	000-030	2.2		
BOCT Had Island -South				
	030-091	2.3	 	<u> </u>
	091-137	2	 	 -
				
53Cl Grassy Island NW	000-030	3	<u> </u>	<u> </u>
	030-071	0.74		
				1
54C1 Grassy Island NE	000-034	1.8		T
	 		 	1
632 Grassy Island W	Ponar	2	 	
or orassy island w	LUIIAL		 	
CIP CT-T-1	\	+	}	
61P Grassy Isalnd SW	Ponar	1.6	ļ	
L	 	 	_	
62P Grassy Island SE	Ponar	2.5	ļ	<u> </u>
			1	<u> </u>
57P Mouth of Ecorse Cre	Ponar	3.		
	-		1	
58Cl Mouth of Ecorse Cr	000-030	1.1	†	1
TISE COLUMN TO SCOT SE VIL	1	<u></u>	 	
52CI BACE Varrhus-la 1	1000 030			
S2CI BASE Northworks low		1.3		+
·	1030-091	1.6		+
	091-152	3.2		
	152-213	1		
	213-218	0.9		
				

RENTON CHANNEL PROJECT	1	%TOTAL ORG.		
EDIMENT CHEMISTRY RESUL		CARBON	LB/FT3	LB/FT3
	cm	DRY BASIS	WET	DRY
	<u> </u>			
EL (Persaud et. al. CME	. 19931	10		
1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1	200 007	1		
1 C1 MNCK DNS-Offshore	000-027	1.18		92
21 C1	027-051	0.85	94.2	90.9
	1.	<u> </u>		
	:000-150	6.58		48.8
MONGUAGON CREEK-DOWN	150-168	7.11	107.3	53.9
	1		<u> </u>	
BLACK LAGOON-CENTER	000-030	5.22		55.4
BLACK LAGOON-CENTER	030-120	6.88		35.3
BLACK LAGOON-CENTER	120-210	6.94		45.8
BLACK LAGOON-CENTER	210-229	3.88	115.6	81.3
				
BLACK LAGOON-LOWER	000-060	6.96	92.9	39.7
BLACK LAGOON-LOWER	060-152	5.34	107.6	54.6
BLACK LAGOON-LOWER	152-203	4.84	102.2	52.2
BLACK LAGOON-EAST	000-055	0.82	128.2	102.5
BLACK LAGOON-EAST	055-103	0.57	119:5	94.3
BLACK LAGOON-EAST	103-166	0.6	118.9	92.5
BLACK LAGOON-EAST	166-229	1.18	116.1	90.8
·	1			
BLACK LAGOON-EAST	000-035	0.7	171.3	137.2
BLACK LAGOON-EAST	035-133	0.66	116.4	91.5
BLACK LAGOON-EAST	133-182	0.94	115.4	89.9
	i			
24 C1 BLLG-Nearshore	000-030	4.64	100	100
24 C1 (WWES Lab)	030-075	4,87		99.9
	1		1	
47E BLLG	Eckman	4	 	
S7 - Black Lagoon	Ponar	5.1		i
40P East of Bouy N "6"	PONAR			
		1		
41P NE of Bouy R "18"	PONAR	4.11	100	99.7
	1		!	
ELIZABETH PARK CANAL	000-079	5.93	94.6	46.4
ELIZABETH PARK CANAL	079-180	4.81	86.8	46.5
LIZABETH PARK CANAL	180-260	5.79		37.6
ELIZABETH PARK CANAL	260-330	3.91	124.7	
				
16 C1 EPNC-Upper	080-000	4.19	100	99.7
16 C1	080-120	4.77	100	
16 C1	120-157	4.29		-
	 _		1	
17 C1 EPNC-Inner	000-040	4.6	97.3	97.2
17 C1	040-080	3.83		100
17 C1	080-140	2.91	99.9	99.9
17 C1	140-175	4.63		99.4
		1	T	<u> </u>
18 C1 EPNC-Lower	000-055	3.95	100	99.6
18 C1	055-125	4.44		
18 C1	125-170	3.81		+
18 C1	170-217	2.38		99.9
			i	1
45E SPNC	Eckman	4.4		1
	1	:		
EP1 - North Marina	Ponar	2.8	. [
	1		i	1
	•			
EP2 - Mid Marina	Ponar	1 6	<u> </u>	
EP2 - Mid Marina	<u></u>	. 6		

TRENTON CHANNEL PROJECT	i	L		
SEDIMENT CHEMISTRY RESULTS			Collection Method/	
SITE DESCRIPTION	Latitude	Longitude	Agency	Estimated Accuracy
55Cl Allied Oil Slip NW	N 42 15 37	W 83 07 29	Mapping Software	+/- 150ft.
55C2 Allied Oil Slip NW - d	N 42 15 37	W 83 07 29	Mapping Software	+/- 150ft.
56C1 Nickelson South Slip	N 42 15 32	W 83 07 43	Loran	+/- 150ft.
56C2 Nickelson South Slip -d	N 42 15 32	W 83 07 44	Loran	+/- 150ft.
59C1 Stenson Club	N 42 14 36	W 83.08 55	Loran	+/- 150ft.
64P Mud Island Northside	N 42 14 4160	W 83 08 3987	Ashtech diff corr	+/- 5ft
65P Mud Island SW	N 42 14 1282	W 83 08 6581	Ashtech diff corr	+/- 5ft
60C1 Mud Island -South side	N 42 14 2701	W 83 08 5673	Ashtech diff corr	+/- 5R
53C1 Grassy Island NW	N 42 13 6828	W 83 08 1324	Ashtech diff corr	+/- 5ft
54C1 Grassy Island NE	N 42 13 7018	W 83 08 0533	Ashtech diff corr	+/- 5R
63P Grassy Island W	N 42 13 3979	W 83 08 1478	Ashtech diff corr	+/- 5ft
61P Grassy Isalnd SW	N 42 13 1423	W 83 08 2095	Ashtech diff corr	+/- 5R
62P Grassy Island SE	N 42 13 1010	W 83 08 1263	Ashtech diff corr	+/- 5ft
57P Mouth of Ecorse Creek	N 42 13 94	W83 08 82	Loran	+/- 150ft.
58C1 Mouth of Ecorse Creek	N 42 13 94	W83 08 82	Loran	+/- 150ft.
52C1 BASF Northworks lower	N 42 12 7136	W 83 08 5514	Ashtech diff corr	+/- 5R
69C1 Wyandotte Yatch Club	N 42 12 44	W 83 08 73	Loran	+/- 150ft.
68P N of Pt. Hennepin	N 42 12 35	W 83 08 27	Loran	+/- 150ft.
68E N of Pt. Hennepin	N 42 12 35	W 83 08 27	Loran	+/- 150ft.
67Cl Portofino	N 43 11 73	W83 09 00	Loran	+/- 150ft.
43P Portofino Slip	N 42 11 50	W 83 08 57	Mapping Software	+/- 150ft.
42P Pt. Hennepin	N 42 11 48	W 83 08 47	Mapping Software	+/- 150ft.
15 C1 T.C. North Marsh	N 42:10:26	W 83:09:29	Mapping Software	+/- 150ft.
51 C l Firestone upper	N 42 10 7916	W 83 09 5462	Ashtech diff corr	+/- 5R
66Cl Firestone Steel -Mid	N 42 10 56	W 83 09 60	Ashtech diff corr	+/- 5ft
45P Firestone Steel	N 42 10 23	W 83 09 55	Mapping Software	+/- 150ft.
50P. Firestone lower	N 42 10 6264	W 83 09 6997	Ashtech diff corr	+/- 5R

TRENTON CHANNEL PROJECT					
SEDIMENT CHEMISTRY RESULTS			Collection Method/		
SITE DESCRIPTION	Latitude	Longitude	Agency	Estimated Accuracy	
EP MARINA - OUTSIDE	N 42:07:47.15	\AI B2:10:25 47	T	· · · · · · · · · · · · · · · · · · ·	
EF WARINA - OUTSIDE	14 42.07.47.13	:W 83:10:35.47	Trimble-USEPA LLRS	+/- 1 meter	
EP MARINA - UPLAND	N 42:07:46.28	W 83:10:36.91	Trimble-USEPA LLRS	+/- 1 meter	
EP MARINA - RIVER BED UP	N 42:07:44.29	:W 83:10:37.60	Trimble-USEPA LLRS	+/- 1: meter	
	i				
EP MARINA - RIVER BED DN.	N 42:07:42.83	W 83:10:39.41	Trimble-USEPA LLRS	+/- 1 meter	
EP1 - North Marina	(231691.73)	(13446002.56)	ArcView-photo	./ 26	
EFT - NOIGH WAITING	1	(13440002.30)	Arcview-prioto	+/- 2 ft.	
EP2 - Mid Marina	(231498.13)	(13445947.77)	ArcView-photo	+/- 2 ft.	
		!			
EP3 - South Marina	(231304.52)	(13445858.27)	ArcView-photo	+/- 2 ft.	
5004	(224020 54)	14044000 711			
EPN (new site)	(231830.54)	(13446000.74)	ArcView-photo	+/- 2 ft.	
EPM-N	(231830.54)	(13446000.74)	ArcView-photo	+/- 2 ft.	
3277	(20/00/04)	1 10110000.14)		+/- 2 ft.	
S11-EPM Upland	(231691.73)	(13446002.56)	ArcView-photo	+/- 2 ft.	
S11D- EPM Upland Dup.	(231691.73)	(13446002.56)	ArcView-photo	+/- 2 ft.	
	1/224604 72\	(12446000 50)	Acal Course hada		<u>-</u>
EPM-1 (S11-EPM Upland)	(231691.73)	(13446002.56)	ArcView-photo	+/- 2 R.	
S12-EPM Mid	(231498.13)	(13445947.77)	ArcView-photo	+/- 2 ft.	
012 2.10.1010	1	1		1,1 4,16,	., .
EPM-2 (S12-EPM Mid)	(231691.73)	(13446002.56)	ArcView-photo	+/- 2 ft.	
EPM2-dup (S12- EPM Upland)	(231691.73)	(13446002.56)	ArcView-photo	+/- 2 ft.	ļ
C12 FD14 C- 45	(224204 52)	(12445050 27)	A cal (ious abata		
S13-EPM South	(231304.52)	(13445858.27)	ArcView-photo .	+/- 2 ft.	<u> </u>
EPM-3 (S13-EPM South)	(231304.52)	(13445858.27)	ArcView-photo	+/- 2 ft.	
(020 0211 000011)					
34P EPSC DOCK	N 42:07:16	W 83:10:55	Mapping Software	+/- 150ft.	
		1	 		<u> </u>
35P EPSC-Inlet 35PC2	N 42:07:13 N 42:07:13	W 83:10:47 W 83:10:47	Mapping Software	+/- 150R.	
33PC2	111.42.07.13	VV 63.10.47	Mapping Software	+/- 150ft.	3,1
20 C1 EPSC-Inlet	N 42:07.213	W 83:10.818	Hand Held GPS-MDNR	+/- 100 R.	
	1	:			
49E EPSC	N 42 07 19	:W 83 11 05	Loran	+/- 150ft.	
	1	1	<u> </u>		
36P Monsanto Lagoon	N 42 07 03	W 83 10 57	Mapping Software	+/- 150R.	
19 C1 Monsanto Bay	N 42:07.000	W 83:10.881	Hand Held GPS-MDNR	+/- 100 ft.	
	1	1		1	
19 C2 Monsanto Bay	N 42:07.000	W 83:10.881	Hand Held GPS-MDNR	+/- 100 ft;	
CHRYSLER BAY-INNER	N 42:06:49.26	W 83:11:06.68	Trimble-USEPA LLRS	+/- 1 meter	
CHRYSLER BAY-OUTER	N 42:06:47.91	W 83:11:02.65	Trimble-USEPA LLRS	+/- 1 mater	-
CHATGLER BAT-OUTER	11 72.00.77.31	VV 03.11.02.03	THINK-OULFA LLRO	- i indidi	
37P Chry Bay Marsh Inlet	N 42 06 49	W 83 11 06	Mapping Software	+/- 150ft.	
	1				
39P Swan Island-North	N 42 06 10	W 83 10 28	Mapping Software	+/- 150ft.	1
200 About 14	11 42 00 00	10/ 02 11 22	Manager Coffee	1/ 1500	
38P Above Humbug Marina	N 42 06 03	W 83 11 22	Mapping Software	+/- 1·50ft.	-
S9 - Chrysler Bay	N 42 06 50	W 83 11 02	Mapping Software	+/- 150ft.	-
	1	1			<u> </u>
CELERON ISLAND	N 42:04:45.36	W 83:10:29.20	Trimble-USEPA LLRS	+/- 1 meter	T T
					

				<u>. </u>	1 '					
	on of Contaminated Sediment Siles	as applied to	o'the Trenton Channel Sedimen	t Survey Results 1993-1996						
	xCeedances									
npacte	ed <1 < impacted < 15 < Moderately	Impacted <	30 < Severely Contaminated <	60 < Extremely Contaminated						
-+		 	<u> </u>				XCESOA	NCES (x o	ref guidelin	(89
	Trenton Channel Project	Core		BIO • TOX						
	Sediment Results	length in cm	CLASSIFICATION	EXCEEDANCE	990	Tox	Toxics		Bioaccum	
lex	SITE DESCRIPTION	in un	CLASSIFICATION	TOTAL	Exceedance	Exceedança	Metals	Organics	PC8s	
	·						-			
5 (69C1 Wyangotte Yacht Club	000-030	Severety Contaminated	33.7	21.0	12.7	30	7 0	10.0	11
	69C1 'Avandotte Yacht Club	230-066	Severely Contaminated	32.6	20.4	12.3	+ 33	8.9	5.4	15
15								- 		
8 (68P N of Pt. Hennepin -	Ponar	Impacted	2.1	0.7	14	1.0	0.4	00 :	Ö
:5					T -					
	68E N of Pt. Hennepin	Eckman	Impacted	2.1	0.8	1.3	1.1	0.1	00	J.
7.5			·							
	67C1 Partofina	000-030	Moderately Contaminated	24.5	13.2	11.3	9.3	5.1	5.7	7
1.5	430 0-4-4 0"	000110	- Indicated				 		أحي	
	43P Portufino Slip	PONAR	Impacted .	0.9	3.2	5.7	4.6	11	0.0	
0 .	42P Pt. Hennepin	PONAR	Impacted	4.4	2.2	2.2	1.9	0.3	- 0.0	
2.5	Ter Pt. (Territope)	- CURAR	Names		4.4	4.4	1.9	0,3	0.0	
	15 C1 T.C. North Marsh	COO-022	Impacted	2.0	0.0	2.0	2.0	0.0	0.0	0
	15 C1 T C. North Marsh	022-062	Impacted	1:8	0.0	1.8	1.0	0.0	0.0	ă
	15 C1 T C. North Marsh	082-100	Impacted	2.1	0.0	2/1	2,1	0.0	0.0	0
1.5							T			
	51 C 1 Firestone upper	000-030	Extremely Contaminated	203.0	185.8	17.2	1.9	8.3	\$5.8	13
	51 C-1 Firestone upper	030-091	Extremely Contaminated	214.4	188.2	26.2	12.5	13.7	28.2	18
	51 C 1 Firestone upper	091-152	Extremely Contaminated	225 9	203.0	22,8	10.8	12.2	43.0	10
	51 C 1 Firestone upper	152-194	Extremely Contaminated	130.8	111 3	19.5	1.4	11.1	16.3	9:
2.5	66C1 Firestone Steel -Mid (45P-srt	-000 030	Extremely Contaminated	201.8	175.1	20.7	11:9	14.8	15.1	16
	86C1 Firestone Steel -Mid (45P site		Extremely Contaminated	130.5	111.7	18.9	0.2	9.7	11.7	10
	66C1 Firestone Steel -Mid (45P site		Severely Contaminated	48.0	31.0	17.0	10	10.4	2.0	29
3 5		100	i	i i	 	 		1 1 1 1	- 4,1	1
24	45P Firestone Steel	PONAR	Extremely Contaminated	118.9	103.3	15.6	10.0	5.6	3.3	10
61	45P Firestone Steel	PONAR	Extremely Contaminated	62.3	71.7	10.7	10.7	0.0	9.7	0:
4.5		Ī.,	_i						<u> </u>	<u> </u>
	50P Firestone lower	Poner	Extremely Contaminated	135.6	110.4	25.3	13.4	11.6	10.4	10
5.5		1		 			1	5.2	7.3	2
	MONGUAGON CREEK-UPSTREA	030-104	Severely Contaminated	48.1 65.3	31.3	18.9 45.7	11.6	27.6	7.0	1
	MONGUAGON CREEK-UPSTREA MONGUAGON CREEK-UPSTREA		Extremely Contaminated Extremely Contaminated	163.5	132.9	30.5	18.1	15,9	33.9	9
75	CACEN-UPSTREAM	1	Cut annual Contramended	100.5	134.3		7-17.3	1		
	MONGUAGON CREEK-UPSTREA	000-030	Severely Contaminated	47.9	31.4	18.5	10.5	6.0	8.4	2
	MONGUAGON CREEK-UPSTREA	030-076	Extremely Contaminated	92.8	64.0	28.6	14.1	14,7	30.0	3
	MONGUAGON CREEK-UPSTREA	076-150	Extremely Contaminated	91.7	60.4	31.3	10.0	14.5	29.4	3
8.3	MONGUAGON CREEK-UPSTREA	150-180	Extremely Contaminated	103.9	87.3	16.6	1.2	8.4	30.3	5
8.5	7.7	 	1	 	+	 		 		+-;
	48E Monguegon Creek	Eckman	Moderately Contemposed	29.9	7.5	22.4	13.6	8.9	4.6	├
9.5	SS - Magazianea C	Poner_	Severely Contaminated	40.1	18.7	21.4	113	10.1	18.7	-
0.5	S5 - Monguagon Creek	- coner	Severely Contaminated		10./	 		10.1	19.7	─ ~
	FI - Fighting Island	Poner	Impacted	16	0.2	1.3	1.2	0.1	0.2	ā
15	1	T. T		1						Ľ.,
	25 C1 MNCK DNS-Nearshore	000-027	Moderatery Contaminated	20.3	11.0	9,3	0.3	1.0	0.0	1
2.1	25 C1 MNCK DNS-Nearsnore	027-051	Moderately Contempated	19.2	9,5	9.7	9.4	0.3	0.0	٩
	25 C1 MNCK DNS-Nearshore	051-095	Moderately Contaminated	29.3	18.3	11.1	10.6	0.5	3.3	1
	25 C1 MNCK DNS-Nearshore	095-132	Severely Contemenated	36.2	17.5	18.7	16.0	0.7	3.5	1
2.5		1		 				0.0	0.0	+
33	21 C1 MNCK ONS-Offsnore	000-027	Impacted	1.2	0.0	1.2	1 13	0.0	0.0	1
3.1 3.5	21 C1 MNCK DNS-Offshore	027-051	Impacted	3.8	2.3	1.5	1.3	V.U .	0.0	+-
	MONGUAGON CREEK-DOWN	000-150	Enremely Contaminated	77.3	58.9	20.4	17.5	2.9	17.9	1-3
4.1	MONGUAGON CREEK-DOWN	150-188	Extremely Contaminated	173.1	147.3	25.9	20.8	5.2	37 3	1
	TACAMA CASEV-DOWN	130-100	Consulate Communicated	17.3.1	1-1.3	+				+

y 4621	ULTS, Classification - Upstream to	Oownstreem									
sific atto	on of Contaminated Segment Site	as applied to	the Trenton Channel Sediment	Survey Results 1997-1996	- +	+					
	xceedances							 -			
	ed <1 < Impacted < 15 < Vioderstel	y impacted <	30 < Severely Contaminated < 6	0 < Extremely Contaminat	ted			l			
			 					CXCEEDA	NCES (x o	ver guidebr	(03)
_	Trenton Channel Project	Care	 	810 + TOX	<u>_</u> _	+					
	Sediment Results SITE DESCRIPTION	in cm	CLASSIFICATION	TOTAL		BIO :	Tox	Tomas		Bioaccum	
dex	SITE DESCRIPTION	1	CONSCINICATION	1012	 ; =	CONTRACT	Exceedence	Alecais	Organics	PC8s	На
9	33P EPC Bridge 5	PCNAR	Moderately Contaminated	21.4		116	9.7	93	0.4	2:5	9.1
9 5					— <u> </u>						
30	EP MARINA · OUTSIDE	000-020	Impacted	1.7		0.0	1.7	17	0.0	0.0	0.0
0.5		!	1								
	EP MARINA - UPLAND	000-006	Impacted	1.6		0.0	1.6	1.0	0.0	0.0	0.0
15	50 114 5014 00150 250 110		Sanata Cartamana					1			
	EP MARINA - RIVER BED UP.	010-020	Severely Contaminated Extremely Contaminated	48.9 65.0		34.2 48.3	14.8	10.0	8.2	4.3	30. 42.1
	EP MARINA - RIVER BED UP	020-028	Extremely Contaminated	79.9	-+	57 9	22.0	11.7	10.3	5.9	52.
	EP MARINA - RIVER BED UP	028-038	Extremely Contaminated	61.5	-	48.1	13,4	12.7	0.7	5.1	43
2.5											
	EP MARINA -RIVER BED DN.	000-013	Severely Contaminated	51.2		40,0	11.2	7.1	4.1	0.0	40.
	EP MARINA - RIVER BED ON.	:013-018	Severely Contaminated	50.0		40.0	10.0	7.7	2.3	0.0	40
3.5		1	100000000000000000000000000000000000000								
55	EP1 - Upland (S11)	Poner	Moderately Contaminated	15.3			11.4	7.9	3.5	3.8	0.0
	EP2 · Mid Manna (S12)	Poner	Moderately Contempated	25.7	- 	8.0	17.7	10.8	7.0	80	0.0
6.5								13.4			L
	EP3 - South Manna (\$13)	Poner	Moderately Contaminated	20.2		4.8	15.4	10.1	5.3	4.8	0.
75											
	EPN (new site)	Ponar	Severely Contaminated	59.2		44.0	15.2	14.8	0.4	00	44
8.1	EPM-N	Eckman	Moderately Contempated	23.8		15.0	8.8	6.7	0.1	0.0	15
8.5	Er win	ECUMEN	- Automatory Contaminator	23.6		15.0	0.0	 	0.1	0.0	 ''
	S11-EPM Upland	Poner	Severely Contaminated	31.4		23.0	6.4	1.1	0.3	0.0	23
	S11D- EPM Upland Oup.	Poner	Severely Contaminated	31.2		23.0	8.2	8.0	0.2	0.0	23
9.15											
	EPM-1 (S11-EPM Upland)	Eckman	Moderately Contaminated	27.0		18.0	9.0	1.9	0.1	0.0	18
9.5			+						├ ──	 	+
9.5 70	S12-EPM Mid	Ponar	Severely Contemented	40.0		29.0	11.0	10.4	0.8	0.0	29
0.05	312-EPRE MINI	Police	Several Contains and			20.0	11.0	19.5	 0.0	- 0.0	
	EPM-2 (\$12-EPM Mid)	Edunan	Moderately Contaminated	25.6		16.0	9.6	0.2	0.4	0.0	16
0.15											
	EPM2-dup (S12- EPM Upland)	Ectonan	Moderately Contaminated	26,2		17.0	9.2	1.2	0.0	0.0	17
0.25		I								1	Γ.,
	S13-EPM South	Poner	Severally Contaminated	40.9		31.0	9.9	0.3	0.5	0.0	31
1.05	C34 2 (C12 E04 Co.m)	Ecuman	Severely Contaminated	45.3		38.0	7.3	8.4	0.9	0.0	36
1.15	EPM-3 (S13-EPM South)	Contan	-Several Containments	43.3		30.0			 ''-	1	 ~
	34P EPSC DOCK	PCNAR	Severely Contaminated	30.8		18.5	12.3	119	0.4	2.5	16
2.5		i									
73	35P EPSC-Intet	PONAR	Moderately Contaminated	22.5		12.0	10.5	10,1	0.4	0.0	12
	35P EPSC-Inlet	PONAR	Moderately Contemposted	19.7		10.0	9.7	1.3	0.4	0.0	10
3.15		1000 000				47.5	44.0		1.7	7.3	40
74	20 C1 EPSC-Inlet	083-088	Extremely Contaminated Extremely Contaminated	62.2 72.1		47.3 55.0	14.9	13.2	2.3	4.0	51
4 15	AN OI EF DUNNER	1	I Programmed Constitution			30.0	''''	+	 •••	1	1
	49E EPSC	Edumen	Moderately Contaminated	23.7		9.6	14.1	10	7.1	0.0	.9
4 25											
75	36P Monsanto Lagoon	PONAR	Severely Contemented	57 3		41,7	15.6	14.5	1.1	2.7	35
75.5	100	000 000	- Carrena			27.	 	1	1:9	1.6	1 30
	19 C1 Monsanto Say	053-085	Severely Contempated	50.1	 +	37.5 42.5	9.2	10.6	1.4	3.5	31
715	19'C1 Monsanto Bay	1033-003	Severely Contaminated	 • • • • • • • • • • • • • • • • • • •		74.3	3.4	- - 	+	+	1 -
	19 C2 Monsanto Bay	1000-051	Severely Contaminated	51 7		40.3	11.5	1.2	2.2	7.3	3:
	19 C2 Monsanto Bay	051-085	Severely Contaminated	45.9		30.2	9.8		2.6	42	3:
7 35							ļ <u></u>				<u> </u>
78	CHRYSLER BAY-INNER	000-030	Impacted	31		7.3	1.1	111	0.0	0.0	1 0
76,1	CHRYSLER BAY-INNER	030-058	Impacted	1.5	+	0.0	1.5	1 9	0.0	0.0	1 8
78.2 '8 25	CHRYSLER BAY-INNER	058-079	Impacted	 		9.0	 	- 		1 9.0	+-
79	CHRYSLER BAY-OUTER	000-013	Moderately Contaminated	27.9		20.4	7.5	6.4	1.1	5.4	1
	CHRYSLER BAY-OUTER	013-061	Impacted	1.9		0.0	1.9	10	0.0	0.0	
9 15		Ĩ								\Box	<u> </u>
	37P Chry Bay Marsh Inlet	PONAR	Impacted	46		1.8	2.0	10	0.0	0.0	 -
80.5	1	100::: 7		 			 			+	+;
81	39P Swan Island-North	PONAR	Impacted	7.5		3.8	3.7		0.6	0.0	+
31 5 32	38P Above Humbug Manna	PONAR	Moderately Contaminated	15.7		8.7	70	100	02	0.0	1-7
82.5	- ABOVE HUITIONS MINITE	- CHARLE			+		1		1 -		
93	S9 - Chrysler Bay	Poner	Impacted	14.1		4.2	99	7.9	20	4.2	\Box
33 5											+-
34	CELERON ISLAND	C00-043	Impacted	3.1		16	15		0.1	0.0	
34 1	CELERON ISLAND	043-074	Impacted	1.5		0.0	1.5	13	0.0	0.0	+-

┡═╋═┡═╋═╋═╋═╋═╃═╂═╄═╄═┡═┪═╂╒╃═╬═╊═╋═╋═╇═╋ ═╋═╋═╇═╇═╇═╁╒╃═╁═┞═╃═╃╒╃╒╃╒╃╒╃═╃═╂═╂╒╂	Exception Exc	Excession Excession 44 (1) 13 14 14 14 14 14 14 14 14 14 14 14 14 14	311-EPM Upland Oxp. Poner 3110-EPM Upland Oxp. Poner S201 BASE Replandments lower 091-192 340 EPSC OXCK PONAR	STI CEPM Upland Ponar STI D. EPM Upland Dup.	S11-EPM Upland Out. S21 BASE Northwares house 001-162	S11-EPM Uptand Orn Poner	911-EPM Ustand	14 1 SZCI BASE Northworks Investor Control Control	030-086	000-030	19 Sep -dup 152-201	040-080	S& 1329 EPC Bridge 4 PONAR Severely Contemprised	2C1-560	35 BLACK LAGOON-CENTER 000-030 Severely Contaminated	280-330	Bonar	Pont.	on Creek Poner	120-157	AMAL	24 C1 BLLC-Nearshore 000-030	24 C1 BLLG-Nearshore 030-075	030-075	EPW-3 (S13-EPW South)	77 3 19 C2 Montanto Bay 051-065 October Contaminated	901.104	ľ	152-213	1 SED UP 000-010	56C2 Nickebon South Silp dup 030-091		19 C1 Monsamo Bay 000-053	080-120	EP WARINA BIVER BED DN	081.085	000-000	OWER 152-203	POMAR	160-000	055-125			SITE DESCRIPTION in an CLASSIFICATION	Jength	Trenton Channel Project Core	The state of the s	Notember 61 Commented 615 Charles incomes (10 Comment of 10 Comment of 15 Charles of 1	C. maniferration
		Tour Tour September 1	31.7 23.0 31.7 23.0 31.1 18.3						1										-					-	-							-	+	+	-	+	-		-	-		-	1			XOY . CE	German Contaminated		Results 1993-1998

.

11111	0.9 0.8 0.8 0.7 0.7 0.7 0.7	00000	0.9 0.9 0.8 0.7 0.7 0.7	Nen-impacted Non-impacted Non-impacted Non-impacted Non-impacted Non-impacted Non-impacted Non-impacted Non-impacted Non-impacted	113-183 103-000 103-101 103-10	11. BLACK LAGOCHEAST 17. BLACK LAGOCHEAST 17.1 BLACK LAGOCHEAST 18.1 BLACK LAGOCHEAST
4 1 1 1 1 1 1 1	1.7	000000000000000000000000000000000000000		Impacted Imp	000-020 0014-107 Pomar 000-008 043-074 030-038	00 SP MARINA - OUTSIDE 44 2 (SELERON ISLAND 31 FF - FEIGHTS Island 41 (SP MARINA - UPLAND 41 (CELERON ISLAND 78 CHRYSER BAYLINER 33 21 C1 - MACK DISSOTRIER
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.8 2.3 2.1 1.5 1.5 1.0 1.0 1.0	2 0 0 0 0 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43 43 33 31 31 21 21 21 21 21 21 21 21	Impacted Imp	POINAR POINAR POINAR POINAR POINAR 1027-051 1000-043 1000	20 1229 PH Hormogen 20 1229 PH Hormogen 33 1209 East of Boury N 'S' 36 1329 EAST BOUNT S' 36 1329 EAST BOUNT S' 36 124 EAST BOUNT SEARCH 78 124 EAST BOUNT MARTEN 17 104E N of PH Hormogen 18 124 EAST BOUNT MARTEN 18 125 EAST BOUNT MARTEN 18 125 EAST BOUNT MARTEN 19 125 EAST BOUNT BOUNT MARTEN 19 125 EAST BOUNT B
	56 57 57 57 15 10 10 10 10	7 1 3 2 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	10 2 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	Impacted Imp	Poner	11 - 02.9 Gressy Island SE 10 - 1019 Gressy Island SW 10 - 1219 Gressy Island SW 10 - 1219 Gressy Island South side 41 - 1219 Gressy Island South side 41 - 1219 Gressy Island No 11 - 1210 Gressy Island No 12 - 1210 Gressy Island No 13 - 3001 Must Island South side 13 - 3001 Must Island South side 13 - 3001 Must Island No 13 - 3001 Must Island Northside 14 - 1449 Must Island Northside 15 - 1501 Gressy Island Northside 16 - 1219 Gressy Island Northside 17 - 1219 Gressy Island Northside 18 - 1219 Gressy Island Northside
######################################	170x Gacaedanca 5 2 9 3 9 3 7 3 7 9 7 9 7 9 7 9 7 9	Exceedance 9.1 4.2 9.3 7.0 9.7	BIO - TOX SICERDANCE TOTAL 14.1 11.3 11.3 11.5 11.5 11.5 11.5 11.5 11.5	CLASSIFICATION Impeded	Core length in orn Poner Poner PONAR	Trenton Channel Project Index SITE DESCRIPTION 5.1 659 Vaud Island 3W 5.1 649 Vaud Island 3W 6.1 649 ONS from Boy R 725 6.1 289 Candhead Cove 6.1 289 Rhwarste Hospital 6.1 289 EPC Bridge 1
			Classification B	Ortameted Transcend Sadment	TOPOGRAPIC	Classification of Communicated Societional Science as applied to Least Communicated Communicated Societion of Communicated Societional Science Societion of Communicated Societional Science Societion of Communicated Societional Societion of Communicated Societional Societion of Communicated Societion of Communicated Societion of

Appendix B. Sediment Survey Results-Data Tables

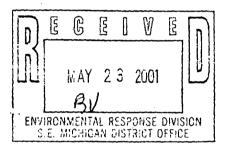
Metals

PCBs

PAHs

Oil and Grease

Grain Size


Acid Volatile Sulfides

TOC, Density

Lat-Long

Classification A: Upstream to Downstream

Classification B: Most Contaminated to Least Contaminated

FROM

"RESULTS OF THE TRENTON CHANNEL PROJECT SEDIMENT SURVEYS 1993-1996!

July 1997

Art Ostazewski by MDEQ swaD USEPA-GINPO Grant \$1995960-R-O

S7 - Black Larson .	17E 9LLG	24 C1 BLIG-Nearshore (MONR Lab)	24 Cl BLG-Mearshore 24 Cl (AMES Lab)	EE	BLACK LAGOON-EAST	BLACK LAGOON-EAST	BLACK LAGOON-EAST	SLACK LAGOON-LOWER	BLACK LAGOON-LOWER	BLACK LAGOON-CENTER	BLACK LAGOOM-CENTER BLACK LAGOOM-CENTER	BLACK LAGOON-CENTER	MONGUAGON CREEK-DOWN	21 C1 MICK DNS-Offshore	11	25 C1	25 C1 SSCN DNS-Nearshore	FI - Fighting Island	SS - Monguagon Creek	48E Nonguagon Creek	THE CALLES OF STREET	MONGUAGON CREEK-UPSTREAM	HONGUAGON CREEK-UPSTREAM HONGUAGON CREEK-UPSTREAM		HONGUAGON CREEK-UPSTREAM	MONGUAGON CREEK-UPSTREAM	50P Firestone lower	TENTS COME STERRY	AND FIRST OF ALL		66Cl Firescone Steel -Mid (452 size-			51 C l firescone upper	Quantiticación tevet (CFA rechod 243)	c. al. OME, 1993)	ERN (Long and Morgan, 1990)	SITE DESCRIPTION	TRENTON CHANNEL PROJECT
20045	Ecksun	030-075	000-030	035-133	200-000	103-166	000-055	152-203	000-060	210-229	120-210	000-030	1991-051	027-031	33-132	051-095	120-027	Ponar	Poner	Eckman	190	1976-150	030-030		010-104	000-030	Ponac	PONAR	etade	160-160	000-030	15:1-134	331-152	000-030	243.17.470.7471			iength	core
3	١	72	200	16 77	11	3 3	1 1	11	=		10		50	2 8	11	. 6	1 1 3	۳	58	40	90	1.1	1 ()	11	= =		2	2 2	11	57	11	-	<u>;;</u>	- 1 - 1				101 561705	HEAV
2	1	្រ	7 -	1.9		2 2		ī	5 2	4.9	22 9	6.5	10.5	2 3		. 7	6.2	28	á	7.4		8.9	7.8		9.9	8.5	-	Ξ,			2	1	12	- -				101 As	HEAVY METALS
9. 7	9 9	10	115	<0.050	â	0.050	60.050 050	9		3.7	= =		22	\$0.03	-	5	5 2	a	1.2	6.2	7.6	22	2 2	1	12	ā	١	-		5 5	5	6	E i	5		٤		0 10 10 10 10 10 10 10 10 10 10 10 10 10	mg/kg
156	98	418	313		- -	9.6	TT	E	191	5	5 5	102	437	9.2	405	167	3 3	2	178	77	170	300	109	٤	67	=	250	165	1	58	260	140	190	ış		145		2	
111	*	213	200	8 2		3.6		166	226	99	210	9	252	15 14	219	Ξ	2 2	٦	Ē	76	122	255	5 5	21.	246		150	221		210	100	190	250	16		190	1 1	107	
7,000	1000	76500	57000	7190		120	200	29000	137000	19800	10100	33200	42000 31700	14100	48300	35700	27700	14200	45900	22000	24400	12900	45900	41300	14100	17500	35000	11000	. 0000	23000	0001	23000	26000	0000		10000		707	
254	160	468	337					E		76	\$ 15	193	124	9.1	102	Ê	5 5	ā	179	150	212	152	277	1	E :	140	260	211	1	190	240	180	26 8	200		110	3	3	71
873	620	1100	927	201			3 3	193	2060	סננ	1070	746	55 6	251	342	3	123	225	653	16	476	12	5 5	320	12 2	â	500	13 23		420	550	410	200	10		1100	191		
â.1			1.2	60.1		a a	â â			-		1	11.9	<0.1 0.23	-	: 3		â	â	0.29	5.7		- 2	9.9	5		5	6.5		10	16	9.5	5 5	=)	-	1.1	137	.12-	
	2	206	164	9.5			7 9	٤,	: 6	=	6 6	46	200 210	17 55	251	90	6 6	=	ig.	32	7.3	160	70	160	210		I I	76 36 8	1,3	57	1,00	11	ij	32		5:0			
2260	: 000	J200	3320 2410	29			3 77	= 1	1140	225	1720	i i	878 1200	50 34	887	6	412	17	850	2 300	777	525	358	721	864		790	592	4 70	520	965	65	5 60	90		1110	WZ 101 1K		

...

. . .

				-ocos						
			1							
		<u> </u>	. 🗤							
	TRENTON CHANNEL SPOUECT SEDIMENT CHEMISTRY RESULTS			202 - 2024						
		Cose Length		PCBs SCAN						
	SITE DESCRIPTION	in cal (TST. PCB	PCB-1016	PCB-1221	PC3-1232	PC3-1242	PCB-1248	PCB-1254	PC3-1250
	ERM (Long and Morgan, 1990)		0.1	 						
	Quantification Level (EPA Method 60	8/308L)	0.33							
	15 C1 T.C. North Marsh	300-022								
		022-062		<0.33	<0.42 <0.33	<0.33 <0.33	<0.33 <0.33	<0.33	<0.33	<0.33
	15 C1	052-100		<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
<u> </u>	51 C 1 Firescone upper	GC0-030	13.40	 						
<u> </u>		030-091	9.31					1.39	1.95	2.97
		091-152	1.20					1.55	2.6	7.05
 	·	152-194	5.39	 				2.96	2.43	< 0.33
	66Cl Firestone Steel -Mid (452 si	CCO-030	4.39		·			1.96	1.36	1.67
		030-091	3.85					1.31	0.89	1.65
		091-104	0.65	 				< 0.33	0.10	0.47
		PCNAR	1.10	<4.4	<1.2	<4.4	<4.4	<4.4	<0.33	1.10
		PCNAR	2.20	<1.1	<1.1	<1.1	<1.1-	<1.1-	2.20	<1.1
-	45PC2	PCNAR	2.56	<1.1	<1.1	<1.1	<1.1	<1.1	1.70	0.87
	50P Firestone lower	Ponac	- 3.43					1.26	1.31	0.86
\vdash	MONGUAGON CREEK-UPSTREAM	000-030	2.4	<2.0	Z1 2					
<u> </u>		030-104	2.5	<2.9	<1.3	<1.3	<2.0 <2.9	<2.0	<2.6	2.4
		104-142	11.2	<1.3	<1.3	<1.3	<1.3	5.7	5.5	<1.3
<u> </u>	HONGUAGON CREEK-UPSTREAM	000-030	2.1	<2.2	42.2			12.2		
		030-076	9.9	<3.1	<2.2 <3.1	<2.2 <3.1	<2.2 <3.1	<2.2	<2.2	9.9
	MONGUAGON CREEK-UPSTREAM	076-150	9.7	<2.8	<5.6	<2.8	<2.8	4.9	<4.8	4.8
	MONGUAGON CREEK-UPSTREAM	150-180	10	<2.2	<4.4	<2.2	<2.2	5.7	4.3	<3.9
	48E Monguagon Creek	Eckman	1,52	1						1.52
		[
	S5 - Monguagon Creek	Ponar	5.18	 		 	 	 	+	
	FI - Fighting Island	Ponar	C.38							
<u> </u>		000-027	 	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
		027-051	<u> </u>	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
		051-095	1.08	<0.33	<0.33	<0.33	<0.33	0.36	<0.33	0.72
⊢ −	25 C1 ·	1095-132	1.15	<0.33	<0.33	<0.33	··· <0.33	0.50	<0.33	0.57
	121 Cl MNCK ENS-Offshore	000-027	<u> </u>	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
	21 Ci	1027-051		<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
 	MONGUAGON CREEK-DOWN	000-150	5.9	<0.33	<2.8	<0.33	<0.33	2.3	<5.5	3.6
	MONGUAGON CREEK-DOWN	150-168	12.3	<0.33	<5.3	<0.33	<0.33	9.6	<7.2	2.7
	BLACK LAGOON-CENTER	000-030	0	<8.91	<8.91	<8.91	<8.91	<8.91	<8.91	<8.91
	BLACK LAGOON-CENTER	030-120	5.5	<2.0	<2.0	<2.0	<2.0	2.4	<3.9	4.1
	BLACK LAGCON-CENTER	120-210	1.6	<1.1	<1.1	<1.1	<1.1	<1.1	1.8	<1.1
	BLACK LAGOON-CENTER	210-229	-	<0.44	<1.3	<0.44	<0.44	<0.44	<0.44	<0.44
	STACK LAGOON-LOWER	000-060	2.8	<3.2	<3.2	<3.2	<3.2	<3.2	2.8	<1.3
<u> </u>	BLACK LAGOON-LOWER	152-203	- 0	<1.7	<5.2 <1.7	<4.0	<1.0 <1.7	<1.7	<2.7	<1.3
— —	BLACK LAGOON-LOWER	1.36-603		1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 .4.3		1 31.7	1 31.7	<0.81
	BLACK LAGOON-EAST	000-055	0	<0.33	<0.13	<0.33	<0.33	<0.33	<0.33	<0.33
<u> </u>	BLACK LAGOON-EAST	103-166	0	<0.33	<0.33 <0.33	<0.33	<0.33	<0.13 <0.33	<0.33	<0.33
	SLACK LAGOON-EAST	166-229	0	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
				10.33	10	15 33	15.35	1.5	1	15.33
	BLACK LAGOON-EAST	035-133	3	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
	BLACK LAGOON-EAST	133-182	0	<0.33	<0.33	<0.33	<0.33	<0.33	<0.13	<0.33
	14 61 246 "	000-030		60.43	<2.9	-0.42	0.81	+	0.43	1 .0 .12
ļ	24 C1 BLLG-Nearshore	000-030	2.50	<0.42 <0.51	<0.51	<0.42 <0.51_	<0.51	1.10	<0.83	1.40
ļ	24 Cl BLIG-Nearshore	030-075		 	<u> </u>	 -	+	+		+
	MONR Labi		1 .	<u> </u>				<u> </u>	1	$\pm -$
	47E 9LLG	Eckman	3.27			1	-	1.2	0.92	11.15
<u></u>	57 - Black Lagoon	Ponar	1 4.75	 	 	 		+		
	13 - Stank hadood				 	<u> </u>				

							ê
	BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER BLACK LAGOON-CENTER	55 C1 25 C1	48E HON 55 - HON 25 C1 H	alalala (alala)	43P PGE 42P PE. 15 C1 T 15 C1 T	68E N OF	TRENTCH CHANNEL PROJECT SECTIMENT CHEMISTRY RESULTS ERY Long and Morgan, 1990) SITE DESCRIPTION
	25-NOO9	CHOUNGON CREEK-DOWN 1 C1 HACK DNS-OCES 1 C1 CT CTEEK-DOWN 5 C1	Honquagon Creek Honquagon Creek Fighting [sland FighCX DNS-Near	ACON CREEK-UPSTI ACON CREEK-U		Pt. Pt.	CHANNEL PROJECT OF CHEMISTRY RECEDED TO THE CH
	NTER NTER	DNS-Offshore	on Creek On Creek DNS-Wearshore	Calledon Cal		Hennepin Hennepin	RY RESU
						6	<u> </u>
	210-229	095-132 095-132 000-027 027-051 000-150	Eckman 70nar Ponar 200-027 227-051	030-091 091-104 Panas 000-030 030-104 104-142 104-142 150-130	PONAA PONAA PONAA 000-022 022-062 022-062 002-030 000-030 031-152 152-194	030-066 Ponar Ectman 000-030	in Can
	75 10.9 19.1			34 68 85 51 73 73 73 73 73 73 73 73 73 73 73 73 73 7		32 14 32 14 12:29	
	 	╁╂┼┼┼┼	╃┩┩	╶┦╌┦╌┦╌┦╌ ┾┼┾┼┼	╪╪┋ ╪ ╄ ┩┼┦┄┼╢┼╢		HS PAN acenta
	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	60.11 60.11		0.73 1.9 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34	0.9 0.11 00		acenaphthene Denz
	CO.44 CO.44 C.73 CO.49 CO.49 C.95 CO.42 C.58 1.4 CO.33 C.51 1.7	(0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)	1.1 2.8 11 2.8 11 2.0 11 2.	1. 1 1.4 1.3 1.6 1.1 1.4 1.3 1.6 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3		0.87 0.87	anapritryfe angva
	49 0.73 8 1.4 1.7	13 0.62 13 0.39 13 <0.33 13 <0.31 13 0.71 13 0.36	11 0.75 13 0.75	1.4 2.3 1.4 2.3 1.6 8.6 4.3 17 4.3 17 4.0 16 0.51 4.0 19 0.87 4.0 19 0.07 4.0 19 0.07 4.0 19 0.07	(0.33 (0.33	7 2.8 7 2.8 0.68	ibenzo(
	7 - 5 - 5	0.4		2.1 11 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.6 2 1.8 L 2.5 L	benzojba benzojba benzojba
•	1 3 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0	0.6 0.4 0.7 0.4 0.3 0.4 0.3 (0.1)(0.3 (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3)	9.3		(0.1)(0.1) (0.1)(0.1) (0.1)(0.1) (0.3)(0.3) (0.3)(0.3) (0.3)(0.3) (0.3)(0.3) (0.3)(0.3) (0.3)(0.3) (0.3)(0.3) (0.3)(0.3) (0.3)(0.3)	2.4 1.6 2.4 1.4 1.4 1.4	Alfhuoranti harco(a)pyre benz
	77 7 7	0.4 0.4 <0.3 <0.3 <0.1	9 9	0.5	0.8 (0.3 (0.3 (0.3 (0.3 (0.3 (0.3 (0.3 (0.3	3.4 3.3 1.2 1.6	IDentZO(a)arrithracene
	의 11 원 의 11 원 의 11 원 의 12 원 의	000 000 000 000 000 000 000 000 000 000 000 000	THE STATE OF THE S	0.92 11 0.92 1	41 41 41 41 41 41 41 41 41 41 41 41 41 4	5.3 5.1 1.8 2.1	On Fi
	AIGIAIA	اماما اماما اماما	أ أما الملمان				anthracing anthracing intrana fluorana F2
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NO N	00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	072 00	a dendo 1
	24 44 44 08 8 0.4 08 18 20 08 43 17	433 433 433 033 12 433 433 433 633 433 433 433 433 633 14 17 433 433 633 14 17	97 49 31 63 15 130 047 433 085 1.3	19 11 27 46 43 13 13 12 7 46 43 13 13 13 13 13 13 13 13 13 13 13 13 13	0.042 0.000 0.000 1.4 0.07 0.083 1.4 0.083 1.4 0.083 1.4 0.83	16 12 38 57 16 12 34 55 072 1068 13 2 0 69 11 1 13 23	appraiene pnena
_	28 3 2 3	1.7 0.80 1.7 0.80	1	007	88 48 33 7 4 88 43 3 7 4	3.8 57 3.4 55 13 2 169 11 13 23	indendo(1.2.3-ciliprene leane inagrasene le ipnerambrene prirene prirene 2 III NI PI P2

RIVERVIEW DATA
(HECONDATA
Well#

Well#	concentration	(ppb) 8/00 sa	mpling date	
VVCII II	Mercury	PCB's	ammonia	cyanide
	Wichouty	1 003	ammonia	Cyaniuc
MW-A	2.1		7980	780
MW-B	19	3.74	12300	2910
MW-C	1.3		3450	5650
MW-D	919	6.04	28600	9560
MW-E	341		6950	1490
MW-G	.3		5060	185
MW-H	1.5		9180	2810
MW-I	.8	.646	5610	510
MW-J	130		32000	2780
MW-K	39		58200	24800
IMW-01			470	39
IMW-05	99.6	4	8800	3300
IMW-06	487	14.3	33,400	9280
IMW-09	21.9		4100	1120
IMW-10	487	48.2	38300	15700
IMW-11	38.7		40100	5950
IMW-12	1.6	3.61	58700	16500
IMW-13	2320	4.35	95100	7620
Pz-1	1.6		4550	2100
Pz-2	14.7		10900	1330
Pz-3	3.4	6.55	1690	530
Pz-4	372	6.55	15800	2420
Pz-5	3.3	.391	13600	10300
Pz-6	18.1		2710	1180
BMW-1			670	158000

8/00	Results
•	

•			∇I		
			8/00	Results	
Shallow 1					
ppo invecting	PCBLA	Cyamar	Juas	ammonia	
5mu-01 .3		450	2100	1.940	
-02 101		1600	21	24,499	
-03		3 5	54	589	
-04. 4. 2		936	2100	10,850	
-05 18.9	2,58	2,070	16	7.340	. · <u>-</u>
-06 MAR		9,720		33.869	
		7000		760	
-08				1,526	
-69 17.4		610	100	2370	
-10 390	53.5	15,199	77	37,500	
-11 40		12,400		50,000	
		16,000	136	37,860	
-13 450		2,720	< \$90	39,7 9 9	
		62		890	
-15 .3		NA		<u>.</u>	
-16			4100	380	
-17		480	<100	6,050	
-18			340	9,470	
-19 		27	٠.	3.949	
-20 1,710	59.4	3,360	35	23,400	
-21 .81		10		480	,
-22 26:9	•	6.440	97	782 00	
-23		850		8.290	
-2u 9		686	4100	4,230	
-35 8		337	4100	1.530	
736 23.5		451	142	4,640	
ハフィーへ		10			

GROUNDWATER SAMPLING RESULTS NOVEMBER 15, 2000 BASF SITE RIVERVIEW, MICHIGAN

	SMW-5, run #1			SMV	SMW-5, run #2 SMW-6, run #1				ı #1	SM	W-6, rur	#2	SMW-10		
Chemical	Conc.	EMPC	Notes	Conc.	EMPC	Notes	Conc.	EMPC	Notes	Conc.	EMPC	Notes	Conc.	ÉMPC	Notes
2,3,7,8-TCDD		44.8		71.6			49.0			37.7			319		
1,2,3,7,8-PeCDD		131		115		1	97.3	•		103			579		
1,2,3,4,7,8-HxCDD	ND			109			99.7			120			264		<u> </u>
1,2,3,6,7,8-HxCDD	985			1270			425			486			4880		<u> </u>
1,2,3,7,8,9-HxCDD	397			561			337			343			2090		
1,2,3,4,6,7,8-HpCDD	12380			15640			7780			6480			81960		E
1,2,3,4,6,7,8,9-OCDD	81410		Ē	123200		E	52510		E	47180		Е	326530		E
2,3,7,8-TCDF	405			443			621		-	807			1880		 -
1,2,3,7,8-PeCDF	ND			304			2290			482			ND		
2,3,4,7,8-PeCDF	ND			187			382			335			678		
1,2,3,4,7,8-HxCDF	262			416			910			947			1620		
1,2,3,6,7,8-HxCDF		74.3		127			239			252			476		
2,3,4,6,7,8-HxCDF	66.6			115			139			135			480		
1,2,3,7,8,9-HxCDF	ND			95.4	· · · · · · · · · · · · · · · · · · ·		ND	,		62.6			-	68.5	X
1,2,3,4,6,7,8-HpCDF	270			410			644			808			1830		_
1,2,3,4,7,8,9-HpCDF	76.8				84.1		126			167			162		
1,2,3,4,6,7,8,9-OCDF	403			529			830			759			1380		
Total TCDD	1710	1920		1800	1910		286	385	. :	280	352		5060	5400	
Total PeCDD	189	738		313	594		319	746		317	674		2950	3950	
Total HxCDD	7990			10540			5200			6090			50730		
Total HpCDD	22250			29530			16570			13740			152270		
Total TCDF	5380	6250		1220	3670	X	6070	6360		3040	6260	X	8100	11740	
Total PeCDF	2950	3990		932	2020	X	4990	5140		1950	3270	Х	4600	8080	
Total HxCDF	1690	1830		1530	1840	X	2610	2760		1800	2570	X	5970	7100	
Total HpCDF	643	734		916	1000		1300			1610	1680		2960	3110	

GROUNDWATER SAMPLING RESULTS NOVEMBER 15, 2000 BASF SITE RIVERVIEW, MICHIGAN

	SMW-13, run #1			SMV	V-13, ru	n #2	SMW-20, run #1			SMW-20, run #2			DUP-1, run #1		
Chemical	Conc.	EMPC		Conc.	EMPC	Notes	Conc.	EMPC	Notes	Çonc.	EMPC	Notes	Conc.	EMPC	
2,3,7,8-TCDD		2.5		ND)	地			展 121				37.8	l
1,2,3,7,8-PeCDD		5.7	J	ND		•	181				215		95.5		
1,2,3,4,7,8-HxCDD	ND				7.3	J	ND			348			68.8		
1,2,3,6,7,8-HxCDD	73.0			70.9			586			1440			749		
1,2,3,7,8,9-HxCDD	35.6		J	40.2		J.	ND			1100			304		
1,2,3,4,6,7,8-HpCDD	1450			1370			72990		E	26770		E	9340		
1,2,3,4,6,7,8,9-OCDD	6760			5240			205370		E	172670		E	61700		E
2,3,7,8-TCDF	114			132		<u> </u>	2920			2850		<u></u>	358		
1,2,3,7,8-PeCDF	ND			24.8		J	967				1690	X	ND		
2,3,4,7,8-PeCDF	ND			23.7		J .	ND	· · · · · · · · · · · · · · · · · · ·		849			163		
1,2,3,4,7,8-HxCDF	43.2		JB	41.5		J	ND			2930			255		
1,2,3,6,7,8-HxCDF	17.1		J	15.6		J	651			878				75.5	
2,3,4,6,7,8-HxCDF		13.7	J	15.2		J	ND			759			94.3		
1,2,3,7,8,9-HxCDF		3.2	JB	7.5	. 7	J	ND				133			63.1	
1,2,3,4,6,7,8-HpCDF	52.9			56.9			4030			3890				179	
1,2,3,4,7,8,9-HpCDF	ND			10.4		J	906			742			64.9		
1,2,3,4,6,7,8,9-OCDF	80.1		JB	42.5		J	5160			4570			460		
Total TCDD	80.5	97.9		83.1	95.8		1720	2340		330	695		1290	1470	
Total PeCDD	16.7	119		··········	26.0		1040	1580		1510	2140	·	232	454	
Total HxCDD	543	580		637	644	-	10730			12810	12950		6390		
Total HpCDD	2530			2430			127110	· · · · · · · · · · · · · · · · · · ·	E	51020		E	17200		
Total TCDF	508	652		482	770	X	27100	28890	F	9510	12240		5900	6410	
Total PeCDF	208	378		137	224		11600	11940		5830	7800	X	2690	3190	
Total HxCDF	179	212		166	184		9130	9260		8280	8610	^	1410	1600	
Total HpCDF	116			111			8190			7840	8060		344	523	

GROUNDWATER SAMPLING RESULTS NOVEMBER 15, 2000 BASF SITE RIVERVIEW, MICHIGAN

	DUF	2-1, run	#2	Field I	Blank, ru	n #1	Field Blank, run #2			
Chemical	Conc.	EMPC	Notes	Conc.	EMPC	Notes	Conc.	EMPC	Notes	
2,3,7,8-TCDD	62.7			ND			ND			
1,2,3,7,8-PeCDD	115	-		ND			ND			
1,2,3,4,7,8-HxCDD	107			ND			ND			
1,2,3,6,7,8-HxCDD	2390			ND			ND			
1,2,3,7,8,9-HxCDD	888			ND			ND			
1,2,3,4,6,7,8-HpCDD	45150		E		0.68	7	ND			
1,2,3,4,6,7,8,9-OCDD	229590		E	·	9.2	J	7.5		J	
2,3,7,8-TCDF	530			ND			ND			
1,2,3,7,8-PeCDF		858	Х		1.2	J	ND			
2,3,4,7,8-PeCDF	184			ND			ND			
1,2,3,4,7,8-HxCDF	569			1.1		JB	ND			
1,2,3,6,7,8-HxCDF	151				0.24	J	ND			
2,3,4,6,7,8-HxCDF	111				0.92	JB	ND			
1,2,3,7,8,9-HxCDF	12.1		J	ND			ΝD			
1,2,3,4,6,7,8-HpCDF	782			1.2		_	ND			
1,2,3,4,7,8,9-HpCDF	101				0.32	J	ND			
1,2,3,4,6,7,8,9-OCDF	585				2.8	JB	ND			
Total TCDD	2820	2850		ND			ND			
Total PeCDD	717	1220		ND			ND			
Total HxCDD	20210				1.9		ND			
Total HpCDD	76610		E		0.68		ND			
Total TCDF	2370	5270	X	ND			ND	_		
Total PeCDF	1160	2770		0.47			ND			
Total HxCDF	2000	2490		1.1			ND			
Total HpCDF	1850	1950		1.2			ND .			